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Model reduction in the physical domain
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Abstract: This paper is concerned with obtaining physical-based low-order approximations of linear
physical systems. Low-order models possess some advantages, including the reduction of compu-
tational di � culty and understanding of the physics of the original system in a simpler manner.
Previously, a number of methods have been suggested to develop suitable low-order approximations.
However, most of these approaches do not re� ect the relation between the mathematical model and
the physical subsystems. Speci� cally, these techniques do not indicate which of the physical subsystems
should be retained or eliminated in the reduced-order model. The proposed model reduction method
is based on identifying subsystem types of a physical system using the bond graph method. These
subsystems are then removed or retained based on the information from the physical system decompo-
sition procedures and partial fraction expansion residues to obtain a reduced-order model. The
physical model reduction procedure is veri� ed on physical linear systems.
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NOTATION

A, B, C, D system matrices
b damper coe � cient (N s/m)
C bond graph capacitance element
F force input (N)
F

ki
force in spring i (N)

G
IC

I–C loop gain
G

IR
sum of loop gains of I–R pairs

G
RC

sum of loop gains of R–C pairs
l bond graph inertial element
k spring coe � cient (N/m)
m mass (kg)
R bond graph resistance element
u input vector
x state vector
y output vector

f
i Õ j

local damping ratio of the local loop
between mass i and mass j

l eigenvalue
v frequency (rad/s)
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0 bond graph common e � ort junction
1 bond graph common � ow junction

1 INTRODUCTION

For complex dynamic systems it is often useful to � nd
a simpli� ed model for purposes such as controller design,
parameter optimization, design assessment under uncer-
tainty and to obtain a better insight into the system
behaviour. Consequently, the model reduction methods
have been investigated in control system analysis for
many years and several methods have been suggested
for determining low-order approximations. Model
reduction techniques serve two important tasks in solv-
ing control engineering problems. Firstly, a model order
reduction is e � ective to render control design problems
to a manageable size when using modern control syn-
thesis methods. Secondly, the controller order reduction
is an interesting research area that enables simpler
hardware/software controllers to be obtained.

It is frequently desired to approximate a high-order
model by a reduced-order model in such a way that the
relevant dynamics is preserved in the low-order model.
Mathematically, this is usually carried out by minimiz-
ation of a suitable error norm. Most of the techniques
in the literature take into account a criterion for the
‘goodness’ of the reduced model. For example, the balan-
cing approach [1 ] uses coordinate transformations to
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convert the system to a special balanced form from
which a reduced model can be obtained. The techniques
based on balancing aim to reduce the order of the trans-
fer matrix between the input and output by targeting
worst-case scenarios. Therefore, the error bound of the
reduced model is guaranteed. However, transfer matrices
and their realizations do not contain the information
about the internal structure of the system. Therefore, in
general, these procedures may not be directly applied to
the modelling and reduction of physical systems.

Several time and frequency domain methods exist that
generally provide good approximations. Some of the
well-known time domain methods are the approximate
moment matching method [2 ], which utilizes the elimin-
ation of some time moments with the employment of a
singular-value decomposition approximation, and the
least-squares model reduction method [3 ], which uses
the power of curve-� tting by calculating a low-order
autoregressive moving average (ARMA) predictor equa-
tion. A number of the principal frequency domain
methods are the following: the component cost analysis
for model reduction [4 ], which uses a quadratic cost
measure for eliminating the modes, Padé approximations
[5 ] and continued fraction methods [6 ], which employ
the continued fraction expansion and inversion processes
with a generalized matrix Routh algorithm to expand a
matrix transfer function into the matrix continued frac-
tion of matrix Cauer forms. Additionally, balance and
truncate types of approaches [7 ], which exploit the bal-
ancing idea, are present in which the drawbacks of refer-
ence [1 ] are eliminated via projections de� ned in terms
of arbitrary bases for the left and right eigenspaces
associated with the large eigenvalues of the product of
the observability and controllability gramians.

In addition to the above approaches, active researches
of model reduction in the physical domain based on
power criteria are being conducted. In these methods
either the components associated with small power � ow
are eliminated, as they have only a small contribution
to the dynamic behaviour of a system [8, 9 ], or a singular
perturbation method is used to reduce the dimension of
the system by considering only one part, namely the
slow or fast part, depending on the frequency domain
of interest [10].

The power method uses various time averages of the
power � ow associated with a component to measure the
corresponding power level [8 ] or energy level [9 ]. The
model reduction approaches in references [8 ] and [9 ] are
conceptually similar to each other. These are established
on power/energy criteria and consist of the following
three major steps: (a) calculating the system’s time
response under certain inputs with numerical simulation,
(b) measuring the power � ow in and out of a component
and (c) removing the components associated with a low-
power � ow level. Speci� cally, Rosenberg and Zhou [8 ]
used bond graphs for measuring the power response to
determine a simpli� ed model for controller design and
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parameter optimization and to gain insight into the
model behaviour. The power responses are obtained by
applying a step input for a given time interval and calcu-
lating the power on all bonds of the bond graph. Then,
a root mean square (r.m.s.) average of each power is
calculated. Finally, the bonds with low average values
are eliminated from the bond graph model. Louca et al.
[9 ] preferred to employ energy as a metric instead of
power because as energy is the time integral of power it
is more advantageous to use it throughout the simulation
time in case there are time-varying elements in the
system. The authors claimed that the r.m.s. power metric
might also provide false information due to heavy weigh-
ing of peak responses. Hence they de� ned an energy-
based ‘element activity index’, which is calculated as the
ratio of the energy � owing through an element to the
total system energy. Then the bonds that are deemed
unnecessary are eliminated from the bond graph model
by removing the low activity elements to a chosen appro-
priate threshold value. The attractive advantage of the
method is that by utilizing the sinusoidal excitation input
the most appropriate reduced model can be obtained as
a function of a prede� ned frequency range of interest.
Although the authors claimed that the method could be
applied for model reduction of non-linear systems, they
acknowledged the need for further study of the appli-
cation of the method to non-linear models. The methods
[8, 9 ] are not strictly proven mathematically, but they
have of course clear physical interpretations for model
reduction. They eliminate elements that are considered
unnecessary according to power or energy level infor-
mation without indicating which subsystems to retain or
remove in a systemic perspective view, which is the
method explained in this paper.

Another physical-based model reduction technique
developed by Sueur and Dauphin-Tanguy [10] makes
use of the singular perturbation method. The fast and
slow dynamics of bond graph models are estimated by
determination of causal loop gains and by utilizing
reciprocal systems. In this method, when the dynamic
subsystems are well separated, the resulting reduced
model is very near to the one deduced from the singular
perturbation method.

In this paper, a physical-based model reduction pro-
cedure is developed and assessed. The method leads to
an appropriate reduced-order model while retaining a
physical relevance to the full-order model. The proposed
methodology exploits the concept of decomposition of
physical systems suitable for identi� cation of dominant
subsystems. For this purpose the idea of Sueur and
Dauphin-Tanguy [10 ] is developed for more general sys-
tems. Using the extended decomposition procedures,
di � erent types of behaviour of a dynamic system are
identi� ed. The dynamic behaviours of a system are
classi� ed in three main categories: (a) fast–slow dynam-
ics as in reference [10], (b) high–low-frequency oscil-
lation modes and (c) heavily–lightly damped dynamics.
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The use of type (b) and type (c) dynamics in conjunction
with the residues and eigenvalues information for model
reduction constitutes the main contribution of the pre-
sent method. The decomposition and model reduction
procedures are implemented on the model directly, pro-
viding a better perception of the physical model
reduction and a better design point of view [11]. This
method is more suitable for weakly coupled systems
from an application point of view.

In section 2, the information for the decomposition
procedures are given and the method of physical model
reduction is explained. In section 3 a few examples are
considered to show the implementation of model
reduction for the assessment of the proposed method
and its results.

2 PHYSICAL DOMAIN MODEL REDUCTION

As mentioned in the previous section, the decomposition
procedures are used to identify fast–slow dynamics,
high–low frequency oscillation modes and heavily–
lightly damped dynamic subsystems for the purpose of
physical model reduction. Then these subsystems are
associated with the partial fraction expansion residues
and eigenvalues of the system. As a last step, the relevant
physical subsystems are retained by considering the
absolute values of the residues (the norm in the multi-
input, multi-output case) of the full model for obtaining
a reduced-order model.

The identi� cation of three principal types of dynamic
behaviour in a linear system will be explored in sec-
tion 2.1. Then in section 2.2 the physical model reduction
procedure will be explained.

2.1 Identi� cation of various dynamic behaviours of
linear systems

The system structure information is obtained by carrying
out the decompositions in the physical domain. These
decompositions are utilized to identify the subsystems
that are responsible for the di � erent dynamic character-
istics of the system, such as fast and slow dynamics, high-
and low-frequency oscillation modes and heavily and
lightly damped dynamics. The procedure is performed
directly on the system using the bond graph models that
describe the dynamic behaviour of the physical system
by the connection of lumped and idealized elements
based on the conservation of energy principle. In the
next subsections these decomposition procedures will be
explained in detail.

2.1.1 Decomposition of fast and slow dynamics

When a system contains fast and slow dynamics, it is
well known that the slow dynamics dominate the system
behaviour. Therefore, the eigenvalues corresponding to
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the fast dynamics can safely be ignored in the analysis.
In case the system contains only resistance R and inert-
ance I elements, or R and capacitance C elements, all of
the eigenvalues of the system will always be real. Thus,
the elements that are involved with fast or slow dynamics
can be identi� ed as in reference [10]; i.e. the system can
be decomposed into two timescales. This identi� cation
is carried out using reciprocal bond graphs and by
decomposing the system into fast reduced and slow
reduced bond graphs using the local loop gain concept.
Local loops are the loops between the physical compo-
nents of a bond graph that have a causal relationship.

As an example, consider a simple R–C circuit and its
corresponding bond graph model, as shown in Fig. 1. In
this model, the capacitance element C1 imposes e � ort to
the 0-junction, then through the 1-junction to the resist-
ance element R

1 . The element R
1 imposes a � ow to the

1-junction and through the 0-junction to the element C
1 .

Therefore, a causal loop is formed between these two
elements. Local loop gains are calculated as follows. For
an I–R loop the loop gain is equal to R/I, for an R–C
loop the loop gain is equal to 1/(RC ) and for an I–C
loop the loop gain is equal to 1/(IC ). The I–R or
R–C loop gains represent the energy dissipation rates in
the local loops for the corresponding energy storage
elements. On the other hand, the square roots of the I–C
loop gains represent the energy exchange rates in the
local loops. Thus, the loop gain of the above causal path
is computed as 1/(R1

C
1). Similarly, a causal loop is

formed between the elements R1 and C2 , C2 and R2 , R2
and C3 , and C3 and R3 .

Now, the information for the two timescales can be
extracted as follows. Suppose that the element C2 has a
particularly small value; then the loop gain 1/(R1

C
2) and

1/(R2
C

2) will become much larger than the others. This
means that the energy stored in the capacitance C2 will
be dissipated by R1 and R2 very quickly. Therefore, the
elements R1 , C2 and R2 together with the junctions that
the causal loops pass through represent the fast dynam-
ics, as shown in Fig. 2a. Once the fast dynamics reaches
its equilibrium status, qb2=0, the element C2 plays no
role in the slow dynamics. Replacing the element C2 with
a � ow source of zero value can realize this condition.

Fig. 1 An R–C system and its corresponding bond graph
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Fig. 2 The bond graph model of the fast and slow dynamics

Thus, the model shown in Fig. 2b represents the slow
dynamics. It is important to note that, if the equations
are derived according to the models in Fig. 2, they will
be exactly the same as those derived using the pertur-
bation theory. With this approach, the physical elements
and the system structures that are responsible for the
fast or slow dynamics can be clearly identi� ed.

2.1.2 Decomposition of high- and low-frequency
oscillation modes

If a system contains only energy storage elements, i.e.
inertial I and capacitance C elements, all of the eigen-
values of the system will be on the imaginary axis and
the system will exhibit pure oscillations. In this case as
an I–C network can be transformed into a � ctitious R–C
or R–I network [12], the decomposition explained to
obtain fast and slow dynamics could be extended to I–C
systems without any modi� cation. Thus, the subsystems
that are responsible for the high- and low-frequency
oscillation modes can be identi� ed if the system contains
well-separated eigenvalues. As an example, consider the
simple cascaded mass–spring system shown in Fig. 3.
Two cases may be examined. In the � rst case, suppose
that the element C2 has a much smaller value, i.e. this
spring is much sti � er than the other two springs, which
have the same order of magnitude. By examining the
local loop gains, it can be observed that the loop gain
associated with elements C

2 , I
1 (k2

/m
1), and the one

associated with C2 , I2 (k2
/m2) are much larger than the

others (k1
/m1 , k3

/m2 , k3
/m3). The decomposition pro-

cedure indicates that the subsystems shown in Figs 4a

Fig. 3 An I–C system and its corresponding bond graph
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Fig. 4 High- and low-frequency oscillation modes (case 1)

and b represent the high-frequency oscillation mode and
the low-frequency oscillation mode respectively. In the
low-frequency oscillation mode, since the elements I

1
and I2 are causally connected directly, these elements can
be grouped and represented by an equivalent I element
as shown in Fig. 5. The physical interpretation of this
decomposition is that in the high-frequency oscillation
mode, the soft springs have only minor e � ects on the
system behaviour. Therefore, they do not appear in the
model. However, the sti � spring behaves like a rigid link
in the low-frequency oscillation mode. The e � ects of
elements I1 and I2 are therefore di � cult to distinguish.
As a second case, assume that the mass m2 has a much
smaller value than the other two masses, which have the
same order of magnitude. In this case, since the loop
gains k1

/m2 and k2
/m2 are much smaller than k1

/m1 ,
k2

/m3 and k3
/m3 , the subsystem representing the high-

frequency oscillation mode will be as shown in Fig. 6a.
Consequently, the subsystem representing the low-
frequency oscillation mode is formed by replacing I

2 with
an e � ort source of 0 value, as shown in Fig. 6b. In this
subsystem, the elements C2 and C3 are causally connec-
ted directly. Therefore, they can be grouped into an
equivalent C element, as shown in Fig. 7. The physical
interpretation of this decomposition is that in the high-
frequency oscillation mode, the large inertance elements
behave like rigid boundaries. On the other hand, the
small mass has almost no e � ect on the dynamics in the

Fig. 5 Equivalent representation of the low-frequency
oscillation mode (case 1)
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Fig. 6 High- and low-frequency oscillation modes (case 2)

Fig. 7 Equivalent representation of the low-frequency
oscillation mode (case 2)

low-frequency oscillation mode. Thus, it does not appear
in the model.

2.1.3 Decomposition of lightly and heavily damped
subsystems

When the system has R, C and I elements at the same
time, an additional dynamic behaviour that needs to be
identi� ed is the heavily damped and lightly damped
modes. In order to identify them, the procedures
explained before should be extended to this more general
case. For this purpose an improved procedure described
below can be applied. For this identi� cation, in addition
to the loop gains for each energy storage element, the
local damping ratios should also be calculated. For each
directly causally related I–C pair in the system (with R
elements causally connected to either I or C or both
elements), the local damping ratios are calculated as
G

RC
/(2 G

IC
) and G

IR
/(2 G

IC
) for the C and I elements

respectively. In these formulae, G
IC

represents the I–C
loop gain, G

RC
represents the sum of the loop gains of

R–C pairs and G
IR

represents the sum of the loop gains
of I–R pairs. Notice that this calculation is equivalent
to determining the damping ratio of a second-order
system. The decomposition procedures for the identi� -
cation of heavily and lightly damped subsystems are now
given [11, 12].

Identi� cation of heavily damped subsystems
1. Replace all the C elements by � ow sources with

0 value and identify the remaining R–I pairs, which

I04803 © IMechE 2003 Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering

are causally related directly. Denote these R–I
elements and the involved junctions as part of a
set called H, representing the heavily damped
subsystem.

2. Restore the C elements that are replaced in the pre-
vious step. Identify the C elements, which are caus-
ally related directly to the above I elements. If

G
IC

ÀG
IR

, then replace the C elements by � ow
sources with 0 value. Denote these � ow sources as
part of the subsystem H. If the inequality is reversed,
neglect the identi� ed C elements.

3. Identify the I elements that become dependent due
to the causalities imposed by the above sources and
denote these I elements as part of the subsystem H.

4. Replace all the I elements by e � ort sources with
0 value and identify the remaining R–C pairs that
are causally related directly. Denote the R–C
elements and the involved junctions as part of the
subsystem H.

5. Restore the I elements that are replaced in the pre-
vious step, identify the I elements that are causally
related directly to the above C elements. If

G
IC

ÀG
RC

, then replace the I elements by e � ort
sources with 0 value and denote these sources as part
of the subsystem H. If the inequality is reversed,
ignore the identi� ed I elements.

6. Identify the C elements that become dependent due
to the causalities imposed by the above sources;
denote these C elements as part of the subsystem H.

7. Identify the resistances, which are involved in heav-
ily damped local loops. Denote these R elements and
the involved I–C pairs and junctions as part of the
subsystem H.

8. Identify the C elements that are not involved in
step 7, but are causally related directly to the above
I elements. If G

IC
ÀG

IR
, replace the C elements

by � ow sources with 0 value and denote these � ow
sources together with the involved junctions as part
of the subsystem H. If the inequality is reversed,
ignore the identi� ed C elements.

9. Identify the I elements that are not involved in
step 7, but are causally related directly to the above
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C elements. If G
IC

ÀG
RC

, replace the I elements
by e � ort sources with 0 value. Denote these e � ort
sources and the involved junctions as part of the
subsystem H. If the inequality is reversed, ignore the
identi� ed I elements.

10. Remove the elements that are not denoted as part
of the subsystem H. The remaining subsystem is the
heavily damped subsystem H.

In the above procedure, step 1 identi� es the R and I
elements that are responsible for the heavily damped
modes, given that they a � ect the dynamics even if all of
the capacitances are disabled. Steps 2 and 3 identify the
I elements that are involved in the heavily damped modes
by the power transmission through I–C loops. Steps 4
to 6 repeat the same procedure for R–C elements. Step 7
includes the overdamped subsystems. Steps 8 and 9
identify the I or C elements that a � ect the heavily
damped modes by power transmission through other
I–C loops.

Similarly, the decomposition procedure for the identi-
� cation of lightly damped subsystems is explained in the
following subsection [11, 12].

Identi� cation of lightly damped subsystems
1. Identify the I–C pairs, which are involved in lightly

damped local loops. Denote these I–C elements as
part of a set called L, which represents the lightly
damped subsystem.

2. Identify the R elements that are not involved in step 1
but are causally related directly to the above I or C
elements. If G

IC
¿G

RI
or G

IC
¿G

RC
, replace the

resistive R elements by � ow sources with 0 value and
conductive R elements by e � ort sources with 0 value.
Denote these sources as part of the subsystem L.

3. Identify the energy storage elements that become
dependent due to the causalities imposed by the above

Fig. 9 Bond graph representation of the tenth-order system
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Fig. 8 A tenth-order physical system

sources. Denote these energy storage elements as part
of the subsystem L.

4. Remove the elements that are not denoted as part of
the subsystem L. The remaining subsystem is the
lightly damped subsystem L.

In this procedure, step 1 detects the lightly damped
subsystems. Steps 2 and 3 identify the I or C elements
that are involved in the lightly damped modes consider-
ing the power transmission through the other I–R loops.
It should be noted that if multiple paths connect two
elements causally then the e � ective loop gain is di � erent
from the sum of the loop gains corresponding to each
individual path. In the latter case, the coupling between
the multiple paths is not taken into account. Otherwise,
the implementation of these procedures remains
unchanged [12, 13].

An example on the decomposition procedure
Consider the system and its bond graph representation
shown in Figs 8 and 9. There are ten independent energy
storage elements in integral causality; hence, the order
of the system is ten. Assume that m1=m2=m3=m4=
m5=1 kg, k1=100 N/m, k2=20 N/m, k3=k5=
10 N/m, k4=1000 N/m, b1=b2=b4=b5=0.1 N s/m
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and b3=10 N s/m. The system can be decomposed into
the subsystems shown in Fig. 10, as described in the
following paragraph.

It is noted that the local damping ratio
f
3–4

=b
3
/(2 k

3
m

3
)=1.58 is much larger than the

others [maximum f
5–3

=b
5
/(2 k

5
m

5
)=0.02 and mini-

mum f
2–5

=b
4
/(2 k

4
m

5
)=1.58×10 Õ 3 ]. This suggests

that the system can be decomposed into two subsystems
representing the heavily damped modes and the lightly
damped modes. The heavily damped subsystem that con-
sists of m

3 , k
3 , b

3 and m
4 can further be decomposed

into fast and slow dynamical subsystems, as shown in
Figs 10b and d. In addition, the local loop gain k4

/m5=
1000 rad/s2 is much larger than the others (maximum
k1

/m1=k1
/m2=100 rad/s2, minimum k3

/m3=k3
/m4=

10 rad/s2) in the remaining lightly damped subsystem.
Thus, this subsystem can be decomposed into two sub-
systems, as shown in Figs 10a and c, namely high-
frequency and low-frequency oscillation modes. The
eigenvalues of the full system and those of the sub-
systems are computed and tabulated in Table 1. The
closeness of these values is noted, indicating the e � ec-
tiveness of the decomposition technique used in the
model reduction method. It is possible to quantify the

Fig. 10 Subsystems of the tenth-order system

Table 1 Eigenvalues of the original and the subsystems of the tenth-order
physical system

Original system
eigenvalues Subsystem Eigenvalues

­ 0.1789±45.4882i 1 ­ 0.1±44.7212i, 0
­ 0.1088±12.3218i
­ 0.4498±4.8881i 2 ­ 0.0979±12.4875i, ­ 0.0771±4.9031i, 0
­ 18.2310
­ 1.0941 3 ­ 20
0
0 4 ­ 1
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closeness by selecting a norm based on eigenvalues or
on the full- and reduced-order model responses.

2.2 Physical domain model reduction procedure

Based on the decomposition procedures explained in the
previous section, the proposed physical domain model
reduction method consists of the following steps:

Step 1. Obtain the linear lumped parameter model of
the system and then draw the bond graph model.

Step 2. Identify the major subsystems of the model
using the decomposition procedures described above
and calculate their eigenvalues.

Step 3. It is well known from basic control theory that
the residues and the eigenvalues are the parameters to
assess in order to � nd the dominant modes of a linear
system. The largest residue and the eigenvalue nearest
to the imaginary axis contribute most to the dominant
part of the time domain response of a linear system.
Hence, in this step the eigenvalues and the partial frac-
tion expansion residues of the full-order model are
computed.

Step 4. Match the eigenvalues that must be retained
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according to step 3 together with step 2 and conse-
quently determine the subsystems to be retained and
eliminated.

In the resulting reduced-order model, there can be a
d.c. gain discrepancy between the reduced- and the full-
order models that can be corrected easily. The d.c. gain
di � erence may occur in cases where some parameters are
eliminated without compensating their e � ects on the
system. This is related to the various sensitivities of the
system with respect to each of the parameters [14]. As
an example, consider that the d.c. gain of the full-order
model of a given system is DCFM=a1a2 and that
a
1
=1, a

2
=10. If the model reduction leads to the elim-

ination of a
1
=1, then the d.c. gains of the full- and

reduced-order models would be unchanged as DCFM=
DCRM

=10. If the model reduction had led to the elimin-
ation of a

2
=10, there would be a d.c. gain discrepancy

of order 10 between DCFM=a1a2=10 and DCRM=a1=
1. It should also be noted that if the output had been
chosen as the � ow variable, such as velocity, in a
mechanical system that had a zero steady state value for
a stable system then the reduced model would not have
any d.c. gain error.

3 MODEL REDUCTION IMPLEMENTATIONS

In this section, a single-input, single-output (SISO)
mechanical system, a hydraulic power system and a
multi-input, multi-output (MIMO) mechanical system
are used to illustrate the implementation of the physical
model reduction and its interpretation.

3.1 A SISO system example

Consider the system shown in Fig. 11 and its bond graph
representation shown in Fig. 12. The system is of order 4.
However, the bond graph modelling method is con-
sidered to have � ve energy storage elements in integral
causality. Hence, the system is of order 5 having one
state in excess. The excess state is due to the structure
of the system, since the spring k

2 does not generate
an independent state. In this example the following
values are chosen for the parameters: m1=m2=1 kg,

Fig. 11 An SISO physical system
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Fig. 12 Bond graph representation of the SISO physical
system

k
1
=k

3
=1 N/m, k

2
=15 N/m, b

1
=b

3
=0.2 N s/m,

b2=1 N s/m. De� ning the power state variables,
x= [F

k1
F

k2
F

k3
xb

1
xb

2
]T, where F

ki
, etc., represent the

force in the ith spring, and u=F as the input to the
system, then the state-space equations become

xb =Ax+Bu (1)

where the A and B matrices are given by

A=

0 0 0 k1 0

0 0 0 k
2

­ k
2

0 0 0 0 k3

­
1

m
1

­
1

m
1

0 ­
b
1
+b

2
m

1

b
2

m
1

0
1

m
2

­
1

m
2

b
2

m
2

­
b
2
+b

3
m

2
(2)

B=C0 0 0
1

m
1

0DT
(3)

If the force F
k1

is considered as the output variable then
the output equation becomes

y= [1 0 0 0 0]x=Cx (4)

The model reduction procedure is applied as follows:

Step 1: modelling. The bond graph model of the system
is displayed in Fig. 12.

Step 2: decomposition. To perform the decomposition,
the following local damping ratios and signi� cant loop
gains are calculated:

b
1

2 m
1
k
1
=

b
3

2 m
2
k
3
=0.1

b
2

2 m
1
k
2
=

b
2

2 m
2
k
2
=0.13

k
2

m
1
=

k
2

m
2

=15 rad/s2

and

k
1

m
1
=

k
3

m
2

=1 rad/s2
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It is noted that the local damping ratios are fairly close
to each other. Thus, it is not possible to immediately
divide the system into two subsystems as a heavily
damped and a lightly damped subsystem. However, it
is possible to identify the high-frequency and low-
frequency oscillation modes. The decomposition
results in the two subsystems shown in Fig. 13.

Step 3: relevant modes. The calculated residues, their
absolute values and the eigenvalues of the full-order
system are shown in Table 2. The largest residue indi-
cates the mode that contributes most to the dynamics
of the system. Therefore, the eigenvalues that corre-
spond to the bold-faced residues should be retained
in the reduced model of order 2.

Step 4: matching modes to subsystems. The subsystems
to be retained have now to be identi� ed. To this end,
the eigenvalues of subsystem 1 are computed as l

1,2
=

­ 0.1±0.9950i and the eigenvalues of subsystem 2 as
l3,4=­ 1±5.3852i, l5=0, which are shown in
Table 2. For a second-order reduced model, it is con-
cluded that subsystem 1 should be retained and sub-
system 2 should be eliminated. Therefore, subsystem 1
is selected as the reduced second-order model.

The time and frequency domain responses of the full-
order and reduced-order models are compared in Figs 14
and 15. These plots indicate that the patterns are in good
agreement. In Fig. 14 it is seen that the time domain
responses have a very small absolute error of 0.0161 at
steady state, which can be eliminated by a constant cali-
bration factor. The frequency response plot shown in
Fig. 15 shows that the mode at v%5.46 rad/s is elimin-
ated from the two-mode full-order model, which justi� es
the proposed model reduction method.

3.2 Hydraulic line of a power steering system

In this section, the model reduction will be applied to a
linearized hydraulic line of a power steering system,

Fig. 13 Subsystems of the SISO physical system

Table 2 Residues, their absolute values and eigenvalues of the SISO system

Original system
Subsystem

Absolute
Residues values Eigenvalues Eigenvalues

­ 0.0000+0.2513i 0.2513 ­ 0.1000±0.9950i ­ 0.1000±0.9950i
­ 0.0000+0.0458i 0.0458 ­ 1.1000±5.4580i ­ 1.1±5.3852i, 0.0000
0.0000 0.0000 0.0000

I04803 © IMechE 2003 Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering

shown schematically in Fig. 16 [11, 15]. The hydraulic
line is assumed to be open to air at the valve end. The
e � ective resistance of the rotary valve indicated by RV
will thus be zero (RV=0 N s/m5). The parameter values
for the pipes and the hoses are tabulated in Tables 3
and 4.

Choosing the state vector as

x= [PP QP1 PH1 QP2 PH2 QP3 ]T

where P
P, Q

Pi and P
Hi

stand for the pressure at the pump
outlet port, the � owrate through pipe i and the pressure
in hose i respectively, the state-space equations can be
written as

xb =Ax+Bu (5)

where the A and B matrices are given by

A=

0 ­
1

CP1
0 0 0 0

1

IP1
­

R
P1

IP1
­

1

IP1
0 0 0

0
1

C
H1

0 ­
1

C
H1

0 0

0 0
1

IP2
­

RP2
IP2

­
1

IP2
0

0 0 0
1

CH2
0 ­

1

CH2

0 0 0 0
1

I
P3

­
RP3+RV

I
P3

(6)

B=C 1

CP1
0 0 0 0 0DT

(7)

Assuming that the output state variable is the pressure
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Fig. 14 Comparison of step responses using subsystem 1

Fig. 15 Comparison of frequency responses using subsystem 1

P
P , then the output equation can be written as

y=PP= [1 0 0 0 0 0]x=Cx (8)

The hydraulic line is of order 6. In order to decompose
this system into its subsystems, the following loop gains
can be calculated:

1
I
P1

C
P1

=102.63×106 rad/s2

I04803 © IMechE 2003Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering

1

IP1CH1
=0.41×106 rad/s2

1
I
P2

C
H1

=0.16×106 rad/s2

1
I
P2

C
H2

=0.32×106 rad/s2
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Fig. 16 Schematic and bond graph representation of a hydraulic line

Table 3 Parameter values for pipes

Pipe number LP (m) IP (kg/m4 ) RP (N s/m5) CP (m5/N)

1 1.369×10 Õ 1 1.45×106 5.30×106 6.72×10 Õ 15
2 3.687×10 Õ 1 3.90×106 1.43×107 1.81×10 Õ 14
3 7.8×10Õ 2 8.24×105 3.02×106 3.83×10 Õ 15

Table 4 Parameter values for hoses

Hose number LH (m) CH (m5/N )

1 4.546×10 Õ 1 1.67×10 Õ 12
2 2.183×10 Õ 1 8.0×10 Õ 13

1
IP3CH2

=1.52×106 rad/s2

The local damping ratios are calculated as

R
P1

2 IP1
/CP1

=1.80×10 Õ 4

R
P1

2 IP1
/CH1

=2.84×10 Õ 3

RP2
2 IP2

/CH1
=4.68×10 Õ 3

RP2
2 I

P2
/C

H2
=4.87×10 Õ 4

RP3
2 I

P2
/C

H2
=6.84×10 Õ 4

RP3
2 I

P3
/C

H2
=1.49×10 Õ 3
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Application of the decomposition procedures suggests
that the hydraulic line can be separated into three sub-
systems. The � rst subsystem consists of I

P1 , C
P1 and R

P1
(a second-order system), the second and the third sub-
systems consist of IP2 , CH1, RP2 , and IP3 , CH2, RP3 . The
eigenvalues of these subsystems are tabulated in Table 5.
In addition, the residues, absolute values of the residues
and the corresponding eigenvalues of the original system
are tabulated in Table 5. It is seen that the � rst mode is
the most important one and it should be retained in a
reduced-order model. Thus, the hydraulic line can be
reduced from order 6 to order 2 by using the � rst subsys-
tem as the reduced-order model. The time and frequency
responses of this system for a step input of Q

P
=

1×10 Õ 4 m3/s are displayed in Fig. 17. It is seen that the
� rst resonance frequency of the full model disappears as
a result of being reduced to a second-order model. A
small d.c. gain di � erence exists in the magnitude plots
that can be corrected by a constant factor.

3.3 A MIMO system example

As a third illustrative example, the method is applied to
the MIMO system of Fig. 18 whose bond graph is shown
in Fig. 19. This system has seven independent energy
storage elements in integral causality; thus it is of
order seven.

Using the power state variables (xb4 , F
k3

, xb 3 , F
k2

, xb2 ,
F

k1
, xb 1), where F

ki
represents the force in spring i and

F
1 and F

2 are two inputs respectively, the following state-
space representation is obtained:

xb =Ax+Bu (9)

where the A and B matrices are given by
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Table 5 Residues, their absolute values and the corresponding eigenvalues of the
hydraulic line

Original system
Subsystem

Absolute
Residues values Eigenvalues Eigenvalues

7.41×1013+1.33×1010i 7.41×1013 ­ 1.83±10151i ­ 1.83±10130i
2.94×1011+1.53×109i 2.94×1011 ­ 1.83±352.74i ­ 1.83±392.03i
5.09×109+6.8×106i 5.08×109 ­ 1.83±1366.1i ­ 1.83±1231.7i

A=

­
b3
m

4

1
m

4

b3
m

4
0 0 0 0

­ k3 0 k3 0 0 0 0

b
3

m
3

­
1

m
3

­
b
2
+b

3
m

3

1
m

3

b
2

m
3

0 0

0 0 ­ k2 0 k2 0 0

0 0
b
2

m2
­

1

m2
­

b
1
+b

2
m2

1

m2

b
1

m2
0 0 0 0 ­ k1 0 k1

0 0 0 0
b
1

m1
­

1

m1
­

b
1

m1

, B=

0
1

m4
0 0

0 0

0 0

0 0

0 0

1
m

1
0

Assuming the velocities xb1 and xb2 of masses m1 and m2
are of interest, the output vector equation is given by

y=Cx (10)

where C is

C= C0 0 0 0 0 0 1

0 0 0 0 1 0 0D
The subsystems shown in Fig. 20 are obtained using

the decomposition procedure described earlier.
Assuming that m1=m2=m3=m4=1 kg, k1=4 N/m,
k
2
=2 N/m, k

3
=8 N/m, b

1
=1 N s/m, b

2
=2 N s/m and

b
3
=4 N s/m, the necessary loop gains and local damping

ratios are calculated as

k1
m1

=
k1
m2

=4 rad/s2,
k2
m2

=
k2
m3

=2 rad/s2

k3
m3

=
k3
m4

=8 N s/m

b1
2 k

1
m

1
=

b1
2 k

1
m

2
=0.25

b2
2 k2m2

=
b2

2 k2m3
=0.707

b
3

2 k3m3
=

b
3

2 k3m4
=0.707

Subsystems 4 and 5 are obtained from subsystem 1. The
eigenvalues of the subsystems are shown in Table 6. The
eigenvalues of the overall system, their corresponding
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residues and the 2-norms are listed in Table 7. Notice
that any norm could have been used in the model
reduction process. The norms of the residues suggest that
the eigenvalues corresponding to the bold-faced residues
in Table 7 should be retained in the reduced-order model.
The analysis shows that the subsystem 1 is the dominant
one. Thus, the � rst subsystem is chosen as the reduced-
order model. The time and frequency responses of the
overall system and its reduced-order model are displayed
in Figs 21 and 22 respectively. These results show that
there is a good agreement between the full- and the
reduced-order models in the MIMO case as well.

4 CONCLUSIONS

In this paper a model reduction procedure that uses
information from the physical domain is presented. The
proposed methodology exploits the idea of decompo-
sition of physical systems suitable for the identi� cation
of dominant subsystems. Most of the previous model
reduction techniques use numerical approaches and the
resulting reduced-order model does not have a physical
relevance to the original system. Physical-based model
reduction methods making use of bond graphs and
power and energy level information eliminate elements
that are considered unnecessary without indicating
which subsystems to remove in a systemic perspective
view. In contrast, the proposed decomposition and
model reduction procedures are directly implemented on
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Fig. 17 Comparison of responses of the hydraulic line
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Fig. 18 A seventh-order MIMO physical system

Fig. 19 Bond graph representation of the seventh-order MIMO physical system

Fig. 20 Subsystems of the seventh-order MIMO physical system

the model, providing a better perception of the physical
model reduction and a better design point of view. In
addition to this feature, the method of Sueur and
Dauphin–Tanguy is improved using the extended
decomposition procedures to identify: (a) fast–slow
dynamics, (b) high–low-frequency oscillation modes and

I04803 © IMechE 2003Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering

(c) heavily–lightly damped dynamic subsystems. The
additional use of type (b) and type (c) dynamic subsys-
tems in conjunction with the residues and eigenvalues
information for model reduction constitutes the main
contribution of the present approach. The relevant
physical subsystems are retained by assessing the
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Fig. 21 Comparison of step responses

Fig. 22 Comparison of frequency responses

absolute values of the residues of the full model. The
physical model reduction procedure is veri� ed on three
linear physical system examples. The reduced-order
model responses were found to be in good agreement

I04803 © IMechE 2003 Proc. Instn Mech. Engrs Vol. 217 Part I: J. Systems and Control Engineering

with their full-order counterparts, except for slight dis-
crepancies in steady state values due to a natural result
of the model reduction process, which may be corrected
by a constant gain factor.
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Table 6 Eigenvalues of the subsystems
of the seventh-order MIMO
system

Eigenvalue Subsystem

­ 0.0000+0.0458i 1
­ 0.9225±1.2199i 1

0 1
­ 4 2
­ 4 2
­ 8 3
­ 1.0000±1.0000i 4
­ 1.0000±2.6458i 5

Table 7 Residues, their 2-norms and the eigenvalues of the
seventh-order MIMO system

Residue 2-norm Eigenvalue

0.2229 ­ 7.1429C 0.001 ­ 0.0150

­ 0.008 0.2220D
0.4792 ­ 1.5381±2.3328iC 0.197+0.093i 0.107±0.126i

­ 0.304+0.076i ­ 0.005+0.238iD
0.5049 ­ 0.7959±1.2097iC 0.185±0.231i ­ 0.217+0.179i

0.2082±0.052i ­ 0.204+0.007iD
0.5 0C0.25 0.25

0.25 0.25D
0.0778 ­ 2.1888C­ 0.014 ­ 0.015

­ 0.051 ­ 0.055D
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