
Proceedings of ESDA2002
6th Biennial Conference on Engineering Systems Design and Analysis

Istanbul, Turkey, July 8-11, 2002

ESDA2002/APM-100

POSITIVE REAL DECENTRALIZED CONTROLLER SYNTHESIS FOR
VIBRATION CONTROL

Levent Öztürk∗
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Bog̃aziçi University

80815 Bebek, Istanbul, Turkey
E-mail: orbak@alum.mit.edu
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ABSTRACT
In this paper, a linear matrix inequality (LMI) ap-

proach is presented for synthesis of full/reduced or-
der H∞ vibration controllers. Being decentralized and
strictly positive realness are given constraints on the con-
troller and closed loop transfer functions, respectively.
All criteria and their interaction between each other are
clearly explained in terms of linear matrix inequalities
(LMIs). In order to find a common solution to these in-
equalities, an alternating projection algorithm combined
with semidefinite programming (SDP) is used. An ex-
ample is presented to demonstrate the approach.

INTRODUCTION
Vibration control is an important issue for harmoni-

cally excited structures. The main goal of control design
is to reduce peak amplitude values of steady state oscilla-
tions; characteristics describing the intensity of vibration
which have considerably important effects on the perfor-
mance and safety of the system. For that purpose, a
considerable amount of work has been devoted to the
vibration control (Öztürk, 1997; Chilali and Gahinet,
1996; Gahinet and Apkarian, 1994). Controller design
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†Author is currently with the Industrial Engineering Depart-
ment, Uludag̃ University, Görükle, 16059, Bursa, Turkey.

is an iterative process between the controller parame-
ters and performance specifications of the controller in-
serted feedback system. In the controller synthesis, one
must adjust the controller parameters until the perfor-
mance of the whole system is satisfactory. In this pa-
per; a linear matrix inequality approach to the design
of vibration absorbers was developed. To determine the
unknown parameters of desired controller, the bounded
real lemma for the closed loop system was considered as a
LMI(linear matrix inequality) problem. Being decentral-
ized and positive realness are considered to be constraints
on the controller transfer function.

One of possible controller structures is decentral-
ized controller structure, where the main idea is the
input/output pairing. In this structure; the controller
transfer function matrix is in a diagonal or block diago-
nal form. Each input, or set of inputs, are assigned to the
control of one particular output, or set of outputs. So the
outputs can be easily controlled. The existence of posi-
tive realness in the controller structure is the only way to
realize a controller by combination of passive elements,
such as masses, springs and dampers. Controllers may
be passive or active. Passive controllers have an energy-
dissipation property (Xie, et. al. 1998). Linear matrix
inequalities are the tools to cast the constraints on con-
troller parameters with the expected performance, stabil-
ity of the system into a matrix form, that in turn prepares
a basis for the efficient numerical computation of the con-
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troller parameters (Dullerud and Paganini, 2000; Ghaoui
and Niculescu, 1997; Vanantwerp and Braatz, 2000). Af-
ter the controller parameters are obtained, various model
reduction techniques can be applied to result in the most
efficient simple-structured vibration controller.

PROBLEM FORMULATION
Let the nth

p order linear time-invariant generalized
vibrating plant be described by the state space equations:

ẋ(t) = Ax(t) + B1w(t) +
N∑

i=1

B2iui(t),

z(t) = C1x(t) + D11w(t) +
N∑

i=1

D12iui(t),

yi(t) = C2ix(t) + D21iw(t) + D22iui(t),

(1)

for i = 1, .., N , total number of controller forces acting
on the plant.

The generalized plant P contains what is usually
called the vibrating plant in a vibration control prob-
lem plus all frequency-dependent weighting functions
and x(t) ∈ Rnp is the state vector of the system.
The disturbance vector w(t) ∈ Rnw contains all ex-
ternal inputs, including disturbances, sensor noise, and
commands. z(t) ∈ Rnz is the vibration amplitude
vector to be minimized, whereas yi(t) ∈ Rny and
ui(t) ∈ Rnu are the ith observation vector representing
the measured variables,here velocities, and correspond-
ing ith control input vector, respectively. The matri-
ces A,B11, B12, C11, D11, D12, C21, D21, D22 are constant
and compatible in dimension with corresponding vectors.

Arranging the matrices in the form;

B2 =
[
B21 B22 · · · B2N

]

D12 =
[
D121 D122 · · · D12N

]

C2 =




C21

C22

...
C2N




D21 =




D211

D212

...
D21N




D22 =
[
D221 D222 · · · D22N

]

One can obtain the plant transfer function in state space
form as




ẋ
z
y


 =




A B1 B2

C1 D11 D12

C2 D21 D22







x
w
u


 (2)

or in s-domain as

[
z
y

]
= P (s)

[
w
u

]
=

[
P11(s) P12(s)
P11(s) P12(s)

] [
w
u

]
(3)

where

Pij(s) = Ci(sI − A)−1Bj + Dij

with i, j = 1, 2.
On the other hand, the dynamic equations of linear

time-invariant controllers of fixed order nc are given as:

ẋc(t) = Acxc(t) + Bcy(t)
u(t) = Ccxc(t) + Dcy(t) (4)

and in the matrix form; it becomes

[
ẋc

u

]
=

[
Ac Bc

Cc Dc

] [
xc

y

]
(5)

where xc ∈ Rnc is the controller state.
Here the controller transfer function matrix is

K =
[

Ac Bc

Cc Dc

]
(6)

DECENTRALIZED CONTROLLER
For a decentralized controller with N-controller force

action on the plant; the matrices Ac, Bc, Cc, Dc, consist
of N sub-matrices Âi, B̂i, Ĉi, D̂i, in following form:

Ac = diag([Â1]n̂1×n̂1 , [Â2]n̂2×n̂2 , · · · , [ÂN ]n̂N×n̂N
)nc×nc

Bc = diag([B̂1]n̂1×1, [B̂2]n̂2×1, · · · , [B̂N ]n̂N×1)nc×N

Cc = diag([Ĉ1]1×n̂1 , [Ĉ2]1×n̂2 , · · · , [ĈN ]1×n̂N
)N×nc

Dc = diag([D̂1]1×1, [D̂2]1×1, · · · , [D̂N ]1×1)N×N

(7)
with

nc =
N∑

i=1

n̂i (8)
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Figure 1. Generalized plant-controller con£guration

The transfer function of a decentralized controller in
s-domain is given as

K(s) = Cc(sI − Ac)−1Bc + Dc (9)




u1

u2

...
uN


 = K(s)




y1

y2

...
yN




=




K̂1(s) 0 · · · 0
0 K̂2(s) · · · 0
· · · 0 K̂3(s) 0
0 · · · 0 K̂N (s)







y1

y2

...
yN


 (10)

where

K̂i(s) = Ĉi(sI − Âi)−1B̂i + D̂i

CLOSED LOOP TRANSFER FUNCTION
For a linear controller with transfer function K(s)

connected from y to u, the closed-loop transfer function
from w to z can be written as a linear fractional trans-
formation (Figure 1)in s-domain:

Tzw(s) = Fl(P, K)
= P11(s) + P12(s)K(s)(I − P22(s)K(s))−1P21(s)

(11)
or in state space form:

[
Ā B̄
C̄ D̄

]
(12)

where

Ā =
[

A + B2Dc(I − D22Dc)
−1C2 B2[Cc + Dc(I − D22Dc)

−1D22Cc

Bc(I − D22Dc)
−1C2 Ac + Bc(I − D22Dc)

−1D22Cc]

]

B̄ =
[

B1 + B2Dc(I − D22Dc)−1D21

Bc(I − D22Dc)−1D21

]

C̄ = [ C1 + D12Dc(I − D22Dc)
−1C2 D12[Cc + Dc(I − D22Dc)

−1D22Cc] ]

D̄ = D11 + D12Dc(I − D22Dc)−1D21

If the open-loop system is augmented with the states
corresponding to the controller, the following augmented
system can be obtained:




ẋ
ẋc

z
xc

y




=




A 0 B1 0 B2

0 0 0 Inc
0

C1 0 D11 0 D12

0 Inc
0 0 0

C2 0 D21 0 D22







x
xc

w
ẋc

u




(13)

equivalently,




˙̃x
z
ỹ


 =




Ã B̃1 B̃2

C̃1 D̃11 D̃12

C̃2 D̃21 D̃22







x̃
w
ũ




where

x̃ =
[

x
xc

]
, ỹ =

[
xc

y

]
, ũ =

[
ẋc

u

]

with

ũ = Kỹ

[ ˙̃x
z

]
=

[
Ā B̄1

C̄1 D̄11

] [
x̃
w

]
.

The closed-loop system matrix can be written as an affine
function of the controller matrix as follows:

[
Ā B̄1

C̄1 D̄11

]
=

[
Ã B̃1

C̃1 D̃11

]
+

[
B̃2

D̃12

]
Ǩ

[
C̃2 D̃21

]
(14)

where

Ǩ =
[

Ac + Bc(I − D22Dc)−1D22Cc Bc(I − D22Dc)−1

Cc(I − D22Dc)−1 Dc(I − D22Dc)−1

]

(15)
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STRICTLY POSITIVE REALNESS
A system in which state variables and the output

take nonnegative values whenever initial states and in-
puts are nonnegative is called a positive system. A prop-
erty for linear systems subject to perturbations is passiv-
ity. A linear system is said to be passive if

∫ τ

0

u(t)T y(t)dt ≥ 0

for all u and τ ≥ 0.

Lemma 1. Positive Real Lemma The passivity prop-
erty for strictly positive realness of the closed loop system
is equivalent to the existence of Q = QT > 0 such that

[
ĀT Q + QĀ QB̄1 − C̄T

1

B̄T
1 Q − C̄1 −(D̄T

11 + D̄11)

]
< 0. (16)

in s-domain; the closed loop transfer function Tzw(s)
is strictly positive real if Tzw(s) is asymptotically sta-
ble and 1/2(K(jω)∗ + K(jω)) > 0 ∀ω ∈ <. Asymp-
totically stable transfer functions are transfer functions
whose poles are in the open left half plane.

H∞ CONTROL
‖Tzw‖∞ denotes H∞ norm of the closed-loop transfer

function Tzw, i.e. its largest gain across frequency in the
singular value norm. The H∞ norm measures the system
input-output gain for finite energy or finite RMS input
signals. ‖Tzw‖∞ = sup

w∈L2,w 6=0
(‖z‖2/‖w‖2) with the con-

straint ‖Tzw‖∞ < γ can be interpreted as a disturbance
rejection performance.

Lemma 2. Bounded Real Lemma Given a system of
the form

[ ˙̃x
z

]
=

[
Ā B̄1

C̄1 D̄11

] [
x̃
w

]
(17)

then the following statements are equivalent:
i) ‖Tzw(s)‖∞ < γ, where Tzw(s) = D̄12 + C̄1(sI −

Ā)−1B̄1 is the transfer function of the system from w to
z;

ii) there exists a positive definite matrix Q such that




ĀT Q + QĀ QB̄1 C̄T
1

B̄T
1 Q −γI D̄T

11

C̄1 D̄11 −γI


 < 0. (18)

PRELIMINARIES
There are two important lemmas before LMI intro-

duction;

Lemma 3. Suppose L1 and L2 are the matrices satisfy-
ing ker L1 = 0 and kerL2 = 0. Then for every matrix L3

there exists a solution L4 to

L∗
1L4L2 = L3

Lemma 4. Elimination lemma Let matrices L1 ∈
Rnxm, L2 ∈ Rkxn, and L3 = LT

3 ∈ Rnxn be given matri-
ces. Consider the set of matrices ϕ(L1, L2, L3) = {L4 ∈
Rmxk : L1L4L2 + (L1L4L2)T + L3 < 0}.

Then the following statements are equivalent:
(i) ϕ(L1, L2, L3) 6= φ.
(ii) The following conditions hold:
L⊥T

1 L3L
⊥
1 < 0 or L1L

T
1 > 0,

L⊥T
2 L3L

⊥
2 < 0 or LT

2 L2 > 0.

LMIs FOR H∞ CONTROL
Using the elimination Lemma and following an al-

gebraic procedure the following necessary and sufficient
conditions for the H∞ control problem can be obtained:
There exists a controller that solves the fixed order H∞
control problem if and only if there exist positive definite
matrices X and Y such that

[ [
B2
D12

]⊥T

0

0 I

] [
AX + XAT XCT

1 B1

CT
1 X −γI D11

BT
1 DT

11 −γI

] [ [
B2
D12

]⊥T

0

0 I

]T

< 0

(19)

[ [
CT

2
DT

21

]⊥T

0

0 I

][
AT Y + Y A Y B1 CT

1
BT

1 Y −γI DT
11

C1 D11 −γI

] [ [
CT

2
DT

21

]⊥T

0

0 I

]T

< 0

(20)

[
X I
I Y

]
≥ 0 (21)

rank

[
X I
I Y

]
≤ np + nc (22)

The rank constraint exists whenever the order of the con-
troller is smaller than the order of the plant. The relation
Rank(I − XY ) ≤ nc can be written as

Rank

[
X I
I Y

]

= Rank

[
I 0

−X−1 I

] [
X I
I Y

] [
I X−1

0 I

]
.

= Rank

[
X 0
0 Y − X−1

]
.

≤ Rank(Y − X−1) + Rank(X)
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and it can be obtained that (Griogriadis and Skelton,
1996)

Rank(X) = np, Rank(Y − X−1) =
Rank(Y12Y

−1
22 Y T

12) ≤ nc.
Then by introducing the notation

Q =
[

Y Y12

Y T
12 Y22

]
and Q−1 =

[
X X12

XT
12 X22

]
,

where X, Y ∈ Rnpxnp and X22, Y22 ∈ Rncxnc and
inserting the expressions for the closed-loop matrices in
the bounded real lemma condition, the following BMI
formulation of the H∞ control problem can be obtained:
Find a parameter matrix Q > 0 and a controller matrix
K̂ such that




(Ã + B̃2K̂C̃2)
T Q + Q(Ã + B̃2K̂C̃2) Q(B̃1 + B̃2K̂D̃21)

(B̃1 + B̃2K̂D̃21)
T Q −γI

(C̃1 + D̃12K̂C̃2) (D̃11 + D̃12K̂D̃21)

(C̃1 + D̃12K̂C̃2)
T

(D̃11 + D̃12K̂D̃21)
T

−γI


 < 0

DIRECTIONAL ALTERNATING PROJECTION
METHOD WITH SP DESIGN

The aim is to minimize Tr(T + S) subject to[
T (X − X0)

(X − X0) I

]
≥ 0,

[
S (Y − Y0)

(Y − Y0) I

]
≥ 0

where
(X, Y ) ∈ Γconvex,
T, S ∈ Sn

We denote the minimizing solutions by (X∗, Y ∗);
that is, the projection onto Γconvex is written as (Scherer,
et. al. 1997)

(X∗, Y ∗) = PΓconvex
(X0, Y0).

In addition to the above LMI constraint sets, we seek
to compute the orthogonal projection onto the nonconvex
constraint set Znc

. To this end, define the following sets
in the space of symmetric matrices

D = {Z ∈ S2n : Z =
[

X 0
0 Y

]
, X, Y ∈ Sn},

P = {Z ∈ S2n : Z ≥ −J},
Rk = {Z ∈ S2n : rank(Z + J) ≤ k},
where k = np + nc and

J =
[

0 Inp

Inp
0

]
∈ S2n.

Then the connection between Znc
and D, P and Rk is

(X, Y ) ∈ Znc
⇔

[
X 0
0 Y

]
∈ D ∩ P ∩ Rnp+nc

.

Note that the sets D and P are closed convex sets,
where Rk is the only nonconvex set.

Theorem 1. Let Z =
[

Z11 Z12

ZT
12 Z22

]
∈ S2n

The orthogonal projection, Z∗ = PDZ of Z onto the
set D is given by (Scherer, et. al. 1997)

Z∗ =
[

Z11 0
0 Z22

]
∈ S2n

The orthogonal projection onto the set P followed by Rk

is provided by the following result:

Theorem 2. Let Z ∈ S2n and let Z + J = LΛLT be the
eigenvalue-eigenvector decomposition of Z + J , where Λ
is the diagonal matrix of the eigenvalues and L is the
orthogonal matrix of the normalized eigenvectors. The
orthogonal projection, Z∗ = PPRk

Z onto the set P fol-
lowed by Rk is given by

Z∗ = LΛkLT − J

where Λk is the diagonal matrix obtained by replacing the
smallest np − nc eigenvalues in Z + J by zero. (Scherer,
et. al. 1997)

If we denote this sequence of projections by PPRk
Z, then

the directional alternating projection onto the set Znc
via

the following sequence of iterations:
Za

i = PPRk
Zi−1,

Zb
i = PDZa,

Zc
i = PPRk

Zb,
Zi = Za

i + λi(Zc
i − Za

i ),
λi = ‖Za

i − Zb
i ‖2

F /Tr(Za
i − Zc

i )T (Za
i − Zb

i )
We call this step of alternating projection algorithm

an inner iteration. Hence the above iteration provides
the projection PZnc

(X, Y ) of (X, Y ) onto Znc
.

The alternating projection algorithm for fixed order
control problem can now be programmed utilizing SP
for projection onto Γconvex and the above inner iteration
scheme for the projection onto Znc

.
The proposed procedure is the following: first find a

solution that corresponds to a full controller. This is sim-
ply done by solving an LMI feasibility for the constraint
set Γconvex.

Next, obtain a solution that corresponds to a con-
troller at most nc − 1.This can be done via the SP prob-
lem

minimize Tr(X + Y ) subject to (X, Y ) ∈ Γconvex.
The obtained solution will be the starting point for

our alternating projection algorithm.
Step 1. Solve the SP problem that corresponds to

a controller of order at most nc = n − 1. The solution
(X0, Y0) will be our starting point

Step 2. Consider the problem where the controller
order is reduced one; i.e. set nc = nc − 1.. Compute the
following iterative sequence of projections:

(Xa
i , Y a

i ) = PZnc
(Xi−1, Yi−1)

(Xb
i , Y b

i ) = PΓconvex
(Xa

i , Y a
i )

(Xc
i , Y c

i ) = PZnc
(Xb

i , Y b
i )

Xi = Xa
i + λX

i (Xc
i − Xa

i ),
λX

i = ‖Xa
i − Xb

i ‖2
F /Tr(Xa

i − Xc
i )T (Xa

i − Xb
i )

Yi = Y a
i + λY

i (Y c
i − Y a

i )
λY

i = ‖Y a
i − Y b

i ‖2
F /Tr(Y a

i − Y c
i )T (Y a

i − Y b
i )
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NUMERICAL EXAMPLES
In this section a case study on controller synthesis is

given. As a model, the 2nd degree of freedom system the
dynamic equations of motion

Msysẍ + Dsysẋ + Ksys =
[

F
0

]

where

Msys =
[

1 0
0 1

]
, Dsys =

[
0.02 −0.01
−0.01 0.01

]

Ksys =
[

8 −4
−4 4

]

is selected. The external harmonic excitation force with
unit amplitude acts on the first degree of freedom. The
vibration amplitude of the second degree of freedom at
ω = 1.24 is 40.4536 which should be minimized. The
controller acts on the second degree of freedom of the sys-
tem. These equations are converted to the state-variable
and output equations by attaining new state variables to
system variables (e.g. x1 for x, x2 for ẋ1, . . . etc.) The
corresponding state space matrices are;

A =




0 0 1 0
0 0 0 1
−8 4 −0.02 0.01
4 −4 0.01 −0.01




B1 =




0
0
1
0


 , C1 =

[
0 1 0 0

]

The state space assumptions for the system are:
A.1 D11 = I,D22 = 0.
A.2 (A,B1) is stabilizable and (C1, A) is detectable.
A.3 (A,B2) is stabilizable and (C2, A) is detectable

for existence of a stabilizing K.
A.4 For ensurance of proper and realizable controller

: rankD12 = nu, rankD21 = ny.
A.5 DT

12

[
C1 D12

]
=

[
0 I

]
. It means that C1x and

D12u are orthogonal so that the penalty on z = C1x +
D12u includes a nonsingular penalty on the control u.

A.6
[

B1

D21

]
DT

21 =
[

0
I

]
. It is dual to A.5 and con-

cerns how the exogenous signal w enters P : w includes
both plant disturbance and sensor noise, these are or-
thogonal, and the sensor noise weighting is nonsingular.
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200
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Figure 2. Full order controller.

A.7 rank

[
A − jωI B2

C1 D12

]
= np + nu and

rank

[
A − jωI B1

C2 D21

]
= np + ny ∀ω ∈ R. to ensure that

the optimal controller does not try to cancel poles or
zeros on the imaginary axis which would result in closed-
loop instability.

A.8 The system is assumed to be collocated;

C2 = BT
2

FULL ORDER CONTROLLER SYNTHESIS FOR THE
2-DOF SYSTEM

A 4th order controller is to be synthesized. After
the optimization process; the results are: ‖Tzw(s)‖∞ <
γmin = 1.9762. The minimized vibration amplitude of
the second mass at ω = 1.24 is 1.1023. The frequency
response with and without controller is given in Figure
2. The synthesized controller is :

K =
[

Ac Bc

Cc Dc

]

=




−0.5947 −1.6427 −0.9168 9.6936 −0.7911
0.5199 −0.1866 −1.1390 −0.5157 −0.1814
0.5471 0.7265 −0.9587 3.7773 −0.6578
−0.8352 0.1647 −0.6327 −0.6283 0.4658
−0.4317 −0.2748 0.3179 −0.4617 −0.9989




FULL ORDER CONTROLLER SYNTHESIS FOR THE
STRICT POSITIVE REALNESS OF THE 2-DOF SYS-
TEM

A 4th order controller which makes the closed loop
system strict positive real is to be synthesized. After
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Figure 3. Full order controller with strict positive real closed loop sys-

tem

the optimization process; the results are: ‖Tzw(s)‖∞ <
γmin = 16.5. The minimized vibration amplitude of the
second mass at ω = 1.24 is 1.5854. The frequency re-
sponse with and without controller is given in Figure 3.
The synthesized controller is :

K =
[

Ac Bc

Cc Dc

]

=




−1.6328 −2.7734 18.2239 −7.4763 16.7006
0.3790 −0.3237 0.1865 −2.0666 1.4899
1.7444 2.2142 −21.3240 21.5843 −19.3678
−1.4635 −0.4372 7.1980 −7.9203 7.649
−0.7265 −0.6763 9.4424 −8.8429 8.0904




REDUCED ORDER CONTROLLER SYNTHESIS FOR
THE 2-DOF SYSTEM

A 2nd order controller is to be synthesized. After
the optimization process; the results are: ‖Tzw(s)‖∞ <
γmin = 2.0962. The minimized vibration amplitude of
the second mass at ω = 1.24 is 1.3002. The frequency
response with and without controller is given in Figure

4. The synthesized controller is : K =
[

Ac Bc

Cc Dc

]
=



−14.1607 −8.7575 0.1726
−8.1012 −9.5012 0.1178
3.9614 5.6944 −0.6410




DECENTRALIZED CONTROLLER SYNTHESIS FOR
A 2-DOF SYSTEM

A 4th order decentralized controller is to be synthe-
sized. After the optimization process; the results are:
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Figure 4. Reduced order controller.
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Figure 5. Decentralized controller.

‖Tzw(s)‖∞ < γmin = 2.8212. The minimized vibration
amplitude of the second mass at ω = 1.24 is 1.0291. The
frequency response with and without controller is given
in Figure 5. The synthesized controller is:

K =
[

Ac Bc

Cc Dc

]

=




−0.5776 1.0747 0 0 −0.1540 0
−1.2692 −0.7737 0 0 −0.1555 0

0 0 −1.9347 6.8161 0 −0.0872
0 0 −1.6160 −3.4287 0 −0.4106

0.2448 0.1918 0 0 −0.7745 0
0 0 −0.0354 −1.1802 0 −1.1291



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CONCLUSION
In this paper, solution methods for the H∞ control

problem are presented using linear matrix inequalities
(LMI’s). Synthesis of full, decentralized or reduced or-
der controllers is realized for this purpose. Moreover,
strict positive realness of the closed loop system com-
bined with the H∞ control problem is also considered in
the controller synthesis problem. The constraints on the
system and controller transfer functions increase the H∞
norm and give less effective results for the system per-
formance. Positive realness and robustness of the syn-
thesized controllers will be the next topics of the future
research.
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