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Bog̃aziçi University
80815 Bebek, Istanbul, Turkey
E-mail: oncelf@yahoo.com
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ABSTRACT
This paper presents a general framework for the con-

trol of nonlinear systems of the form Ex(r)ẋ = f(x, u),
Ey(r)y = h(x, u) using techniques developed for linear
parameter-varying systems. The stability characteristics
and the control law of the system are obtained with both
classical Lyapunov considerations and linear matrix in-
equalities (LMI). In the synthesis part, multi-convexity
criteria is used to construct a linear finite dimensional
controller, whose state-space entries can also depend con-
tinuously on parameters r, such that the closed-loop sys-
tem is exponentially stable and achieves good perfor-
mance with respect to variations in these parameters.
While the performance and the stability specifications of
the system are achieved, the region of attraction of the
system is considered as a design criterion. Both the phys-
ical constraints and the chosen control law act on the de-
termination of the region of attraction of the system. It is
shown that the region of attraction for a given control law
can be systematically derived by LMI-based approaches.
All developed methods are then applied on a cart and
inverted pendulum system. Generalizations from the re-
sults are concluded for both system with LPV control
and the system with the classical linearization method.

INTRODUCTION
Designing a controller for systems with widely vary-

ing nonlinear dynamics is a major area of research in con-
trol theory. Gain-scheduling is a technique widely used
to control such systems in a variety of engineering ap-
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plications. However, in the design of the gain-scheduled
controller, the nonlinear system is divided into some op-
erating points at which a linear time invariant (LTI) con-
troller is found and a global controller is then computed
by interpolation between these points. As it is seen, in-
terpolation step constitutes a drawback for this controller
method. Therefore, a new control method which does not
include such disadvantages is needed. At the beginning of
1990’s, linear parameter varying (LPV) control method
has been introduced by Shamma and Athans (Shamma
and Athans, 1991) to overcome all these difficulties. This
method includes linear time-varying plant models whose
state-space description is a fixed function of some pa-
rameter vector r. The parameter vector r(t) ∈ <n is not
uncertain and assumed that the value of r(t) is known in
real-time which give real-time information on variations
in the plant characteristics, that is, the model at time t
is assumed to be obtained only at that instant t through
the parameter r, not beforehand.

In 1991, Shamma and Athans has studied the LPV
systems by considering them as LTI systems in which
slowly varying parameters are used. Packard, in 1991 and
1992, “self scheduled” the controller and tried to obtain
the stability and high performance along all trajectories
r(t). The study in (Gahinet et. al., 1994) has proposed
an LMI-based test for the robust stability/performance
of linear systems with uncertain real parameters. Beside
LMI-based techniques, the contribution of the convex-
ity approach to LPV problems has been firstly seen in
the papers of Iwasaki and Skelton (Iwasaki and Skelton,
1994). In this paper, the covariance control approach
is introduced at first. Other approaches of convexity
involving LMIs and Riccati equations include paramet-
ric Lyapunov functions (Yu and Sideris, 1997), LFT and
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polytopic design (Kajiwara et. al., 1999), and LQR solu-
tion techniques for a cart-pendulum system with the con-
sideration of maximized stability region (Seto and Sha,
1999).

All of these studies have shown that the LPV system
and nonlinear system studies have a somewhat very close
relationship since the theoretical developments in LPV
systems occurred at the same rate as the developments in
the nonlinear systems. The available LPV synthesis tech-
niques allow the construction of the global control law as
a whole entity for all admissible r. They furthermore
provide theoretical guarantees in terms of both stability
and performance in the presence of fast-time evolutions
of the parameters. But an important issue in the design
of control systems involves the question to what extent
the stability and performance of the controlled system is
robust against perturbations and uncertainties in the pa-
rameters of the system. The main analysis approach for
this assessment of stability and performance makes use of
the method of Lyapunov which is summarized as follows;
an equilibrium point is stable if all solutions starting at
close distances from that point stay nearby; otherwise, it
is unstable. It can be shown that the differential equation

ẋ = Ax(t) (1)

is stable if and only if, there exists a positive definite
matrix P = PT and the condition AT P + PA < 0 is
satisfied, which we now call as a Lyapunov inequality on
P (Khalil, 1996).

The objective in this paper is to develop a design
methodology that ensures the stabilization of the nonlin-
ear systems with constraints while maximizing the “vol-
ume” of the region in the state-space <n over which the
ellipsoidal method is applied. The approach heavily de-
pends on the LMI technique. Throughout the paper, the
system that will be analyzed with respect to the stability
is given by:

Ex(r)ẋ = A(r)x + B(r)u (2)
Ey(r)y = C(r)x + D(r)u. (3)

The first step in controller design is to obtain a linear
description or approximation for the nonlinear plant that
involves time-varying parameters. Time-varying param-
eters can be defined as,

r(t) =
[
r1(t) r2(t) · · · rp(t)

]T (4)

whose time variations are constrained by

r(t) ∈ S ⊂ <p (5)
ṙ(t) ∈ T ⊂ <p. (6)

LINEAR PARAMETER VARYING SYSTEMS
In state-space form, an LPV system is described by

ẋ = A(r)x + B(r)u (7)
y = C(r)x + D(r)u

where x ∈ <n is the plant state, u ∈ <m2 is the control
input, y ∈ <p2 is the measured output and r = r(t) de-
notes a time-varying parameter vector. The parameter
vector is called as the admissible parameter trajectories
which are continuously differentiable time-varying vec-
tors having the form of

P , {r : <+ → <q : r(t) ∈ S
and ṙ(t) ∈ T ,∀t ≥ 0} (8)

where

S , {r ∈ <q : rα ≤ rα ≤ r̄α,∀α = 1 : q} (9)

and

T ,
{
d ∈ <q : dα ≤ ṙα ≤ d̄α,∀α = 1 : q

}
(10)

The vertices of S and T can be denoted as:

Svex , {r : rα = rα or r̄α,∀α = 1 : q}
and
Tvex , {ṙα = ṙα or ¯̇rα,∀α = 1 : q} (11)

However, as indicated before, throughout the study,
the system of interest is

Ex(r)ẋ = A(r)x + B(r)u
Ey(r)y = C(r)x + D(r)u (12)

where E’s are invertible and all matrices are affine in ri’s,
i.e.,

Γ(r) = Γ0 +
∑n

i=1 riΓi , where
Γ : E,A, B, C,D.

(13)

Thus, at this point, the difference between the gen-
eral form of LPV systems, (7), and (12) must be stated.
Since, when the system (12) is premultiplied by E−1

i (r),
i = x, y, z, the obtained system is exactly an LPV sys-
tem of the form (7) and therefore one may suppose that
the classical solution techniques must be applied for this
special case. However, since it was assumed, at the be-
ginning, all the techniques applied are valid for convex
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systems and the premultiplication terms, Ei’s, corrupt
affinity and so convexity, the results used for general
form of LPV systems cannot be used for the systems
of the form (12). Therefore, throughout the study, the
LPV systems of the form (12) will be analyzed and the
generalized solutions will be obtained.

The following section deals with the analysis of the
system with respect to the stability characteristics.

ANALYSIS
The analysis part contains the case where there is

no control input act upon the system (12). If u(t) = 0 is
replaced in (12), we end up with

E(r)ẋ = A(r)x. (14)

The following theorem will give us sufficient conditions
for the above system to be asymptotically stable.

Theorem 1. The system (14) is asymptotically stable if
there exists X(r) = X(r)T such that,

X(r) > 0 , ∀r ∈ S (15)

and

E(r)X(r)A(r)T + A(r)X(r)E(r)T

−EẊET (r) < 0 , ∀r ∈ S, , ∀ṙ ∈ T
(16)

However, this theorem states that there are infinitely
many solutions satisfying LMI’s (15) and (16) under the
domain of (S, T ). Since we are dealing with convex func-
tions, if the convexity of the system are guaranteed by
applying multi-convexity criteria (Gahinet et. al., 1994),
then it will be sufficient, instead of looking at the all
points of the set, to check for the corner points of the
set S × T for the system to be finite dimensional. The
multi-convexity criteria states that a system is convex if
the second derivative of the system with respect to the
system parameter is greater than or equal to zero. There-
fore, for the system (14) to be asymptotically stable, the
following LMI’s must be satisfied,

X(r) > 0 ,∀r ∈ Svex, (17)

E(r)X(r)A(r)T + A(r)X(r)ET (r)
−E(r)Ẋ(r)E(r)T < 0,
∀(r, ṙ) ∈ Svex × Tvex,

(18)

EαXαAT + EαXAT
α + EXαAT

α+
AαXαET + AαXET

α + AXαET
α−

EαẊET
α ≥ 0 , ∀α = 1, . . . , n.

(19)

Since the LMI conditions that make the system (14)
asymptotically stable are obtained, we can proceed to the
next section which mainly deals with obtaining a con-
troller satisfying asymptotic stability.

SYNTHESIS
Our goal is to design a controller that satisfies

asymptotic stability with L2-gain γ (Wu et. al., 1996).
While considering controller synthesis for the system
(12), we assume all r’s and ṙ’s are available for feed-
back. If the system’s state matrix is considered as
x̃ =

[
x1 x2 . . . xn

]
, the system can be controlled by

fully- or partly-feeding back the state matrix. We will
analyze the system with dynamic output feedback con-
trol.

In dynamic output feedback control, the goal is to
design a controller of the form

ẋc = Ac(r, ṙ)xc + Bc(r, ṙ)y,
u = Cc(r, ṙ)xc + Dc(r, ṙ)y.

(20)

such that the closed loop system (12), as seen in Figure 1,
is asymptotically stable with L2-gain γ.
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Figure 1. Block diagram for dynamic output feedback control.

For simplification D(r) is assumed to be identically
zero and the following theorem is applied.

Theorem 2. There exists a controller of the form (20)
that asymptotically stabilizes system (12) if there exists
X = XT : P → <n×n, Y = Y T : P → <n×n, F : P →
<m2×n and G : P → <n×p2 such that (Köse, 2001),

AXET
x + ExXAT + B2FET

x +
ExFT BT

2 − ExẊET
x < 0

(21)

AT Y Ex + ET
x Y A + GC2 + CT

2 GT +
ĖT

x Y Ex + ET
x Ẏ Ex + ET

x Y Ėx < 0
(22)
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where ∀(r, ṙ) ∈ S × T and

[
X(r) I

I E(r)T Y (r)E(r)

]
> 0 , ∀r ∈ P (23)

In this case, the controller in (20) can be given by the
following definitions:

Dc = 0
Cc(r) = FX−1

Bc(r) = −Z−1G (24)
Ac(r, ṙ) = Z−1ET

x Y [A + B2Cc] − BcE
−1
y C2 +

Z−1AT E−T
x X−1 + Z−1X−1ẊX−1

where Z(r) = Ex(r)T Y (r)Ex(r) − X(r)−1 > 0.

Again for the finite dimensional form, we must ap-
ply the multi-convexity criteria for the conditions to be
satisfied at (S × T )vex. The multi-convexity condition
of (21) is the same as (19). For (22), enforce

AT
α(2YαE + Y Eα) + (2YαE + Y Eα)T Aα+

(AT
αY + 2AT Yα)Eα + ET

α (AT
αY + 2AT Yα)T +

ĖT YαEα + ET
α Ẏ Eα + ET

α YαĖ ≥ 0 ,
∀(r, ṙ) ∈ Svex × Tvex , ∀α = 1 : q

(25)

and the second derivative of (23) results in

ET
α YαE + ET

α Y Eα + ET YαEα ≤ 0 ,
∀r ∈ Svex , ∀α = 1 : q.

(26)

Up to this point, we did not put any limitations
to the system’s stability characteristics. However, in
real life, both the operating conditions and performance
conditions, such as physical limitations (length or angle
range) and power limit of a motor, constraint a system.
Therefore, the following section analyzes the limitations
acting on the system and aims to construct a region of
attraction under all these limitations.

THE REGION OF ATTRACTION WITH LINEAR CON-
STRAINTS

The invariant region or the region of attraction of a
linear control system will be restricted by the constraints
imposed to the system. The system can only evolve in the
feasible region in the state space, where no constraints
will be violated. Thus an invariant region has to be a
subset of the feasible region. An invariant region is de-
fined as;

De£nition 1. If we denote the state trajectory originat-
ing at x0 at time t = 0 by ψ(t, x0), then for a set S ⊂ <n,
we say S is invariant with respect to a system if ∀x0 ∈ S
implies ψ(t, x0) ∈ S for all t ≥ 0.

We then have the following invariance property:

Theorem 3. If a matrix defined as X = XT > 0 is the
Lyapunov matrix of a system that makes it asymptotically
stable, then the ellipsoid

ΨX−1 , {x ∈ <n : xT X−1x ≤ 1} (27)

is invariant with respect to the defined system.

If the physical plant that we are interested in is de-
fined as ẋ = (x, u(x, t)), then the state constraints acting
on the system are q1(x) ≤ 0, ..., ql(x) ≤ 0 and the control
constraints are p1(u) ≤ 0, . . . , pr(u) ≤ 0. The state and
control constraints together give the physical constraints
to the physical system. The safety of the system is con-
cerned with the operation of the physical system without
violating these physical constraints.

However, we are interested with LMI’s and therefore
all these physical limitations must be introduced to the
system as LMI’s. For example, a constraint defined as
|xi| ≤ x̄i is put into an LMI form by the following ma-
nipulations

|xi| ≤ x̄i=⇒|eT
i xi|≤x̄i =⇒ xT eie

T
i x ≤ x2

i (28)

=⇒ xT eie
T
i

x̄2
i

x ≤ 1 (29)

and since our invariant region must be within this limi-
tation, using the invariance property (Öncel, 2001)

eie
T
i

x̄2
i

≤ X−1 =⇒ X
eie

T
i

x̄2
i

X ≤ X (30)

⇐⇒ −X + Xei(x̄2
i )

−1eT
i X ≤ 0 (31)

⇐⇒
[
−X Xei

eT
i X −x̄2

i

]
≤ 0 (32)

In these manipulations, ei is a column matrix denoting
which variable of the state matrix to be constrained and
the last inequality is a result of Schur complement.

To determine the invariant set under dynamic output
feedback control, we are aware of the fact that there is a
relationship between X and Y parameters as Ỹ −X−1 ≥
0 where, as before, Ỹ = ET Y E. In that case, we have a
Lyapunov matrix P with the following property

P =
[

X X
X X + Z−1

]−1

=
[

Y ∗
∗ ∗

]
> 0 (33)

where ∗ denotes the unnecessary information. With that
definition of P , our invariant stability region takes the
following form (see Figure 2);

ΨP =

{[
x
xc

]T [
X X

X X+Z−1

]−1 [
y
yc

]
≤ 1

}
. (34)
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Then the sets ΨX(r), ΨỸ (r), and ΨP (r) are invariant in
the sense that given any x̂(0) ∈ ΨP (r), the ensuing state
trajectory satisfies x(t) ∈ ΨP for all t ≥ 0. It is also clear
that all initial conditions, x̂(0) =

[
xT

0 0
]T , lie in ΨP (r)

if and only if

x(0) ∈ ΨỸ (r) ,⋂
r∈S{x ∈ <n : xT Ỹ (r)x ≤ 1} =⋂
r∈<vex

{x ∈ <n : xT Ỹ (r)x ≤ 1}.
(35)

Moreover, as discussed in (Ghaoui and Scorletti, 1996),
if x̂0 ∈ ΨP (r), then x(t) ∈ ΨX(r)−1 and xc(t) ∈
Ψ(X+Z−1)−1 for all t ≥ 0, where ΨX−1 is defined in (27)
and

Ψ(X+Z−1)−1 ,⋂
r∈S{x ∈ <n : xT (X(r) + Z(r)−1)−1x ≤ 1}. (36)

In other words, as seen in Figure 2, for all initial con-
ditions starting in the invariant region of ΨP (r), the
state trajectories must not leave the sets ΨX−1 and
Ψ(X+Z−1)−1 for asymptotic stability.
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Figure 2. The invariant set and the necessary notations under dy-

namic output feedback control.

The state and control constraints acting on the dy-
namic output feedback control can be described as fol-
lows;

rα(xi) ∈ [rα, r̄α] if |xi| ≤ x̄i : The condition
|xi(t)| ≤ x̄i for all t ≥ 0 is satisfied if ΨX−1 lies in-
side {x ∈ <n : |xi| ≤ x̄i} which is introduced to the
system, as above, by the following LMI;

[
−X(r) Xen,i

eT
n,iX −x̄2

i

]
≤ 0 ∀r ∈ Svex. (37)

rα(uj) ∈ [rα,r̄α] if |uj | ≤ ūj : Since the controller
state xc never leaves the region Ψ(X+Z−1)−1 and u =
Cc(r)xc = FX−1xc, by the same manipulations as
above we need to enforce the condition




−X FT em,j I
eT
m,jF −ū2

j 0
I 0 −Y


 ≤ 0. (38)

APPLICATION TO A CART AND INVERTED PENDU-
LUM SYSTEM

The inverted pendulum is a very popular experiment
used for educational purposes in modern control theory.
As shown in Figure 3, the physical system consists of a
cart, driven by a AC motor, and a pendulum attached
to the cart. The cart can move along a horizontal track,
and the pendulum is able to rotate freely in the range of
[−60◦, 60◦] with respect to vertical in the vertical plane
parallel to the track. The control objective is to bring the
pendulum to the upper unstable equilibrium position by
moving the cart on the horizontal axis.

 
 
 
 
 
 
 
  

 

 
 
 
 
 
 
             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x+Lsinθ 
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M 

mb 

Lcosθ 

F 

x mr , L 

Figure 3. The cart and inverted pendulum model.

The system’s governing equations are:

( mr
2 +mb)L cos θẍ+( mr

3 +mb)L
2θ̈=(mb+

mr
2 )gL sin θ

(M+mr+mb)ẍ+(mb+
mr
2 )(L cos θθ̈−Lθ̇2 sin θ)=F

(39)

where mb, mr and M stands for the masses of the bob
of the pendulum, rod, and the cart, respectively, L is the
length of the pendulum, g stands for the gravitational
acceleration, F is the force applied to the cart.

This highly-nonlinear system must be turned into an
LPV form by newly-defined parameters. The parameters
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of the form r1 , cos θ, r2 , sin θ/θ , r3 , sin θθ̇ and the
state vector x =

[
x θ ẋ θ̇

]
put (39) into a state space

form as described in (12);




1 0 0 0

0 1 0 0

0 0 (mb+
mr
2 )Lr1 ( mr

3 +mb)L
2

0 0 (M+mr+mb) (mb+
mr
2 )Lr1







ẋ

θ̇

ẍ

θ̈


=




0 0 1 0

0 0 0 1

0 (mb+
mr
2 )gLr2 0 0

0 0 0 (mb+
mr
2 )Lr3







x

θ

ẋ

θ̇


+




0

0

0

1




F.

(40)

Since the finite dimensional form of the system (40)
is desired, the minimum and maximum values of the pa-
rameters must be defined for θ between −π/3 and π/3;

r1 ∈ [1/2, 1] and r2 ∈
[
3
√

3/2π, 1
]

for θ ∈ [−π/3, π/3] ,
r3 ∈

[
−

√
3

2 ω,
√

3
2 ω

]

for(θ, θ̇) ∈ [−π/3, π/3] × [−ω, ω]

(41)

and

ṙ1 = −r3 and ṙ2 ∈ [−0.3123ω, 0.3123ω]
for (θ, θ̇) ∈ [−π/3, π/3] × [−ω, ω].

(42)

Now, since the system is a physical plant, it includes
some physical constraints, such as the AC motor has only
limited power and the track has finite length, which are
introduced as LMI conditions;

|x| ≤ h ⇒
[
−X(r) Xe4,1

eT
4,1X −h2

]
≤ 0, (43)

|θ| ≤ π/3 ⇒
[
−X(r) Xe4,2

eT
4,2X −(π/3)2

]
≤ 0, (44)

|ẋ| ≤ 3 ⇒
[
−X(r) Xe4,4

eT
4,4X −w2

]
≤ 0, (45)

|u| ≤ 100 ⇒
[
−X(r) FT (r)
F (r) −u2

]
≤ 0, (46)

∀r ∈ Svex, where e4,1 =
[
1 0 0 0

]T
, e4,2 =

[
0 1 0 0

]T

and e4,3 =
[
0 0 1 0

]T
. Therefore our revised stability

region S is described by

S = {X | |x1| ≤ 0.8, |x2| ≤ π/3,
|x3| ≤ 3, |u| ≤ 100} (47)

With the above definitions of the physical con-
straints, the notion of a region of attraction will be intro-
duced to characterize a subset of the system state from
which the system stability can always be maintained.

For the following controller

ẋc = Ac(r, ṙ)xc + Bc(r, ṙ)y (48)
u = Cc(r, ṙ)xc + Dc(r, ṙ)y (49)

the performance of the system is obtained as in Figure 4;
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Figure 4. System performance under dynamic output feedback con-

trol for an initial angle of θ = 0.3 rad.

All the performance characteristics in Figure 4 is ob-
tained for the initial condition of x0 =

[
0 0.3 0 0

]T . We
are mostly interested with the pendulum and cart po-
sition figures since we put constraints on these param-
eters. As seen from the figure, the pendulum comes to
the upright position after approximately 6 seconds un-
der dynamic output feedback controller. As the left-top
figure shows, the rise time of the cart position is approx-
imately 2 sec. In the cart velocity graph, we see that the
cart never exceeds the limit value, 3 m/sec. Pendulum
angle (position) figure gives us the results for rise time,
settling time and overshoot as tr = 0.8 sec, ts ∼= 5 sec
and Mp = 0.0915 rad, respectively.

Now, let’s consider the input force graph. Figure 5
gives us the force graph for an initial angle of θ = 30o. In
that figure, our maximum force takes the value of 15.6
N. Since the constraint imposed on the input force is 100
N, the result is acceptable.

Analyzing the stability region and the system stabil-
ity with respect to whether it goes to zero or not gives
us Figure 6. The figure shows us the maximized region
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 Figure 5. Input force graph for θ = 30o.
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Figure 6. Invariant set and stability characteristics of the inverted

pendulum system under dynamic output feedback control.

of attraction and the ellipsoids evaluated at the vertices
of the admissible parameter trajectory which is defined
in (8). According to our theory, for a system to be sta-
ble, a state trajectory starting in the maximized region of
attraction must not leave the outermost ellipsoid of the
admissible parameter trajectory. Therefore, to prove the
stability of our system, we choose 3 state trajectories, one
is starting at a very close point to the boundary of the
maximized region of attraction. Namely,

[
0 0.3 0 0

]T
,[

0 0.5 0 0
]T and

[
0 0.8 0 0

]T
.The figure shows that the

state trajectory reach to the origin in each cases validat-
ing our theory and thus the stability of our system under
dynamic output feedback control.

Now, it is time for making comparisons between the

LPV system and the linearized system. The linearized
system is obtained from (39) with the classical small an-
gle approach. The linearized system response to an initial
angle of θ = 0.65 rad. is seen in Figure 7.
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Figure 7. Linearized system characteristics for a given initial angle of

θ = 37◦.

As it is seen from the graphs, although the system
constraints are not violated, the linearized system cre-
ates too much oscillation and they indicate that the time
required for the system to reach stability is greatly in-
creased. For example, the time for the pendulum to be
in the upright position is approximately 10 seconds which
is quite undesirable. Furthermore, Figure 8 gives us the
stability characteristics of the linearized system. Note
that, due to the characteristics of the linearized system,
this figure does not give us sufficient information, i.e., for
example, the interval of [-0.8 0.8] which seems as the θ
value is lying in the maximized region of attraction does
not reflect the real values for pendulum. Because when
the linearized system is simulated above 40◦ degree, the
system becomes unstable. However, for the sake of com-
parison, the stability region of the LPV system is simu-
lated with the same initial angle, and shown in Figure 9.

To observe the characteristics of both systems, Fig-
ure 9 will be more helpful. As seen in this figure, LPV
system has much better results.

CONCLUSION
In this paper, analytical approaches are developed

for asymptotically stable nonlinear systems. Linear pa-
rameter varying method in which an assigned parameter
is used to convert the nonlinear system into a linear one
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Figure 8. The stability region of the linearized system. An initial angle

starting at 37◦ reaches to stability after oscillations.

 

 

Figure 9. For comparison purposes, the LPV system is run for the

same initial condition of 37◦ as in linearized form and the stability

region is obtained.

is used for the control purposes. A region of attraction is
formed by the constraints imposed on the system. Since
the volume of the region of attraction and the system per-
formance are inversely proportional, a maximized region
of attraction is obtained under the protection of better
performance. While these approaches are developed in
association with a particular control system, the general
analytic framework is applicable to other control appli-
cations without much difficulty.

The applied methods are the applications of Lya-
punov stability theory and Linear Matrix Inequality
(LMI) methodology to the development of an asymptot-
ically stable controller. Namely, full state feedback and
dynamic output feedback methods are used as the anal-

ysis and synthesis techniques. These techniques provide
a mathematical basis for confirming the safety region of
the controller and deriving the safety control laws.

Finally, a comprehensive application of LPV control
techniques to the control of a cart and inverted pendulum
system is presented. Undoubtedly, the major obstacles
for stabilizing this system are the implementation con-
straints that put hard limitations on the controller dy-
namics. The difficulty of handling that problem with the
currently known LPV techniques are eliminated by using
the LMI techniques. These implementation constraints,
known as physical constraints, determine the region of
attraction of the system in which the system is known to
be stable. Two cases are considered: 1) deriving the re-
gion of attraction for the given physical constraints; and
2) constructing the region of attraction such that the
volume is maximized. Throughout the paper, both the
physical constraints and the conditions that render the
region of attraction as maximized are introduced to the
system as LMI’s. In the inverted pendulum system, if the
control gain is obtained such that the region of attrac-
tion is too large, the corresponding controller would take
a longer time to drive the physical system to a neighbor-
hood of the equilibrium state. Therefore, in the actual
design, a trade-off must be considered between the vol-
ume gained and performance lost.

The simulation results give us quite satisfactory re-
sults. In dynamic output feedback control, the system
performances are better than the classical design crite-
ria and the obtained region of attraction guarantees the
system’s stability. However, in the linearized system, sta-
bility region cannot guarantee the stability of the system.
Although the constructed graphs show a stability region
for θ between −50◦ and 50◦, the system cannot be sta-
bilized for the values of |θ| > 40◦. Therefore, it can be
generalized that the system with LPV control guarantees
the system stability for all values of state parameters cho-
sen in the stability region and the stability region of the
LPV system is larger than the stability region of the lin-
earized system.

While the inverted pendulum is a prototype system,
it certainly contains a lot of control issues. It must be em-
phasized that the analytic approaches developed to ad-
dress these issues can be very well extended to other con-
trol applications, including large-scale control systems.
On the other hand, of course, there are still some un-
solved problems and they can be the possible subjects of
the future researches.
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