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Abstract 
This paper presents a linear matrix inequalify (LMI) based 
approach combined with the cone complementarity algorithm 
for the synthesis of H ,  velocity feedback full/reduced or- 
der dynamic and static vibration controllers. The resulting 
controllers are considered to be decentralized and positive 
real. In order to form the necessary constraints, linear matrix 
inequalities (LMls) are used. Several aaniples are presented 
to demonstrate the results of the approach including the 
actual realization of the controller using dissipative elements. 

1. Introduction 
vibration control is an important issue for structures sub- 

jected to different types of loading conditions, i.e. disturbance 
forces that induce severe vibration. The main characteristic 
describing the intensity of vibration is the peak vibration 
amplitude which have considerably important effects on the 
performance and safety of the system. The peak values 
of the vibration can be eliminated using various control 
approaches [I], [Z], [3]. The velocity feedback control [SI 
is one of such methods. In this method, velocity values of 
the system are utilized to create the control action that can 
either be in static or dynamic state. This paper considers both 
cases of velocity feedback. 

The decision of selecting the controller parameters de- 
pends on the performance requirements of both the controller 
and the uncontrolled system. The starting point for the 
formulation of desired system specifications is the hounded 
real lemma for the closed loop system. There are several 
constraints on the controller transfer function including being 
decentralized and positive real. The decentralized controller 
structure is in a diagonal or block diagonal form, thus the 
input/output pairing can he established. On the other band, 
the positive realness is the key criteria in order to design 
passive controllers [4] made up of masses, springs and 
dampers. 

In order to develop a useful synthesis method of such mul- 
tiohjective controllers, linear matrix inequalities (LMIs) are 
a useful tool providing an algebraic representation of many 
control specifications [4]. LMI based methods enjoy efficient 
polynomial time convex optimization algorithms to solve 
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LMls. LMIs are also used to represent the constraints on 
system and controller performances [ 5 ] ,  [6], [7] .  This paper 
considers a combined LMI-cone complementarity algorithm 
in order to calculate both the dynamic and static velocity 
feedback controller parameters. . 

2. H ,  problem and formulation 
In this section, a nkh order linear time-invariant general- 

ized plant P that contains what is usually called the vibrating 
plant in a vibration control problem will he considered. The 
generalized plant P also includes all frequency-dependent 
weighting functions. The plant transfer function can be 
written in state-space form as follows: 

A Bi Bil [ ,] = [ ;; ;I; a;] [ a ]  (1) 

where the matrices are arranged in the form; 

B2 = B22 . . . B2hi  ] 
0 1 2  = [ z1 0 1 2 2  ..' 0 1 2 ~  ] 

0 2 1  = 0 2 1 1  0 2 1 2  . . .  D Z I N  
0 2 2  = 0 2 2 1  0 2 2 2  . . .  0 2 2 ~  

C2 [ c 2 1  c 2 2  " '  C 2 N  1' 

I T  
and i = 1, .., N, total number of controller forces acting on 
the plant. 

The ultimate aim is to minimize the vibration amplitude 
vector, z ( t )  E RfL.. yi(t) E R". and u;(t) E R"" are the 
ith observation vector representing the measured variables, 
in this case velocities, and corresponding itlr control input 
vector, respectively. z ( t )  E R". is the state vector of the.sys- 
tern. The disturbance vector w ( t )  E R"- contains all external 
inputs, including disturbances, sensor noise, and commands. 
The matrices A; B 1 > B 2 ,  C 1 1 : 0 1 1 ,  0 1 2 , C 2 1 ,  0 2 1 ,  0 2 2  are 
constant and compatible in dimension with correspond- 
ing vectors. The standard assumptions for the system are 
used [IO]: 

A.l Dii = 0 , 0 2 2  = 0. 
A.2 ( A ,  B1) is stahilizable and (Cl, A)  is detectable. 
A.3 ( A > & )  is stahilizable and (C2,A) is detectable for 

A.4 In order to ensure a proper and realizable controller: 
existence of a stabilizing,K. . 

R a n k 0 1 2  =nu, RankD21 = nu. 
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- 
the sensor noise weighting is nonsingular. 

np + nu and 
Ci Di2 Bz 1 = 

A.1 Rank I 
that thi  optimal contr&& does not try to cancel poles or 
zeros on the imaginary axis which would result in closed- 
loop instability. 

A.8 The controller is assumed to be collocated; 

C2 = B,' 

The generic equations of motion for linear time-invariant 
dynamic controllers of fixed order n,, are given as: 

( 2 )  
kc( t )  = A,z,(t) + B,y(t) 
~ ( t )  = cczc(t) + D 4 t )  

arranging in the matrix form one obtains: 

where zc E E"' is the controller state. 
On the other hand. the controller transfer function matrix 

to the controller, the following augmented system can be 
obtained: 

(6 )  

x 

z =  

U 

equivalently, 

A B1 B2 

c2 D21 0 5 2  

where 

with 
6 = K i  

The closed-loop system matrix can be written as an affine 
function of the controller matrix as follows: 

where 

llTzwllm denotes H ,  norm of the closed-loop transfer func- 
tion from w to z where T,, = &I + c ~ ( s I  - A)-'B1, i.e. 
its largest gain across frequency in the singular value norm. 
~ ~ T z , ~ ~ m  < y can be interpreted as a disturbance rejection 
performance, so the following lemma can be introduced 

Lemma I :  Bounded Real Lemma [SI Given a system of 

(4) 

Now, for the static case; the equations of motion for 
linear time-invanant velocity feedback static controllers K 
are reduced to 

u(t)  = Ky( t )  ( 5 )  
with the controller K = R F  where 

K = dzag(k,,)  

and F ,  a structure matrix consisting of ones, zeros and minus 
ones. 

When a linear controller with transfer function K(s)  is 
inserted from y to U ,  the closed loop transfer function from 
w to I can be constructed as seen in Figure 1 [IO]. If the 
open-loop system is augmented with the states corresponding 

then the following statements are equivalent: 
i) l l ~ z w ( ~ ) l l m  < Y 
ii) there exists a positive definite matrix Q such that 

ATQ+QA Q& CT 
BTQ -yI DTl 

gebraic procedure the following necessary and sufficient 
conditions for the Hm control problem can be obtained 
There exists a controller that solves the fixed order H ,  
control problem if and only if there exist positive definite 
matrices X and Y such that 
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X I  
[ I  Y ] > 0  

Note that, the rank constraint exists whenever the order of 
the controller is smaller than the order of the plant. €or the 
static controller case, order of the controller is n, = 0. The 
relation 

RaTlk(I - X U )  5 n, 

can be written as 

X I  Rank [ I ] 

J 

4 Ran.k(Y - X-') + R m k ( X )  

R a n k ( X )  = 71p, Rank(Y - X-l )  = 

Then by introducing the notation 

and it can be obtained that [5] 

Rcd(Y1zYG'Y;) < n,. 

where X: Y E Rn+"p and X22: YZZ E Rn=m= and inserting 
the expressions for the closed-loop matrices in the hounded 
real lemma condition, the following bilinear matrix inequal- 
ity (BMI) formulation of the H ,  control problem can he 
obtained 

Find a parameter matrix Q > 0 and a controller matrix l? 
such that 

(16) 
-71 

Equation (16) can be solved by standard LMI Toolbox of 
Matlab or any other LMI solvers. 

3. Constraints on the controller 

In this section, several constraints on the controller will be 
formulized via LMI's. 

3.1. Decentralized controller 
€or a decentralized controller with N-controller force 

action on the plant; the matrices A,, B,; C,, D,; consist of 
N suh-matrices Ai, Bi: C,, bi: in the following form: 

Ac = d i a g ( [ A ~ ] ~ , x . e , ,  i A z ] i i . x ~ , , ' . .  L [ A ~ ] ~ N x i i N ) n , x a ,  

c c  = di~g([c l ] lx iLl ,  [ ( ; ; ] l ~ i L ~ ~  ' ' _  > [ C N ] l x i L N ) N x n ,  

BC =diQg([&]6,xi, [ ~ z ] f i , x i : " '  ; [ ~ ~ ] f i , ~ x i ) ~ , x ~  

= diad[DiIi Y I ID21 1 x I . . ' , ib~11 x l ) N x ~  

(17) 
N 

with 

3.2. Positive realness 
The last lemma that needs to be introduced is the positive 

real lemma which will add the positive realness property to 
the obtained controller. 

Lemma 2: Positive Real Lemma [5] The passivity prop- 
erty for positive realness of the controller is equivalent to the 
existence of any matrix W = WT > 0 such that 

-2 , \ L , -  - ~~r 
For the s t a h  controller case; this reduces to 

kii > 0 (20) 

It should be pointed out that, this condition automatically 
guarantees the stability of the closed loop system. 

4. A combined LMI-cone complementarity al- 
gorithm 

The following sets in the space of symmetric matrices 
should be defined before the introduction of the algo- 
rithm [lo]: 

D = { Z  t SZ7' : Z = [ ; ; 3 , X , Y  € S"), 

Rk = { Z  E S2'L,: rank (Z  + J )  5 k } ,  
where k = n+ + n, and 

It should Le noticed that, in addition to the convex LMI 
constraint sets (I1 - 13), when the non-convex constraint 
exists, the following theorem should be used to compute the 
orthogonal projection onto the non-convex constraint set [lo]. 

Theorem I :  [7] Let Z E SZn and let Z + .J = UCVT be 
the singular value decomposition of Z + J .  The orthogonal 
projection, Z' = qE,Z onto the set Rk is given by 

J = [ l  ' ; ] , s Z n .  

Z' = UCkVT -. J 

where C I  is the diagonal matrix obtained by replacing the 
smallest np - n., singular values in Z + .I by zero. 

As a result, the following algorithm can he constructed 
in order to obtain a feasible controller that satisfies positive 
realness [IO]: 
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Step 1: Find X, Y that satisfy the LMI constraints 
(11 - 13) and minimize y. If the problem is infeasible, stop. 
Otherwise, ymzn = y and set Xo = X,Yo = Y and k = 1. 
Using (15), solve (16) for A' and go to step 7. If the solution 
is infeasible, go to step 2. 

Step 2: Set yk = y k - 1  + t with 0 < E < 10e - 2. Find 
Xk,Yk that solve the corresponding cone complementarity 
problem [6]: 

Step 3: minimize Tr(Xk_ ,Yk+XkYk-I )  subject to LMl's 
(11 - 13). 

Step 4: If the objective Tr(Xk-,Yk + XkYk-1) has 
reached a stationaly point, go to Step 5 .  Otherwise, set 
k = k + 1 and go to Step 3. 

Step 5: Denote the minimizing solutions by ( X * , Y * ) :  
that is, the projection onto I?,,,,,,, is written as (X*, Y' )  = 
Pp,,,,,, (Xo:  Yo), construct Z. If there exist non-convex 
constraints apply Theorem (1) and compute Z'. 

Step 6: Take Q = 2 or 2' and solve the controller k in 
(16). If the solution is infeasible, go to step 2. 

Step 7: When the positive realness constraint exists on the 
controller, check (19). If the controller satisfies (19), stop, 
else go to step 2. 

5. Numerical examples 
In this section, case studies on controller synthesis will be 

given. As a model, the same two degree of freedom system 
of [9 ] ,  [ IO] is used. The system has the equations of motion 

where 

Harmonic excitation force acts on the first degree of 
freedom externally. The aim is to minimize the co-norm of 
the second degree of freedom. Assuming that the controller 
is acting on the second degree of freedom, the following 
state-space ma!rices are obtained [IO]: 

r 0  o 1 0 1  

4 -4 0.01 -0.01 

0 0  0 
-8 4 4 . 0 2  0.01 

A =  I 
B , = [ O  0 1 O ] T , C 1 = [ O  1 0 a ]  

5.1. Positive real fulureduced order dynamic 
and static controller synthesis 

A 4th order (full) and a 2nd order (reduced) dynamic 
controllers were synthesized in [IO]. Their results are recited 
here for completeness of this paper. For the full order 
controller, l&,(s)llw < ynrin = 1.5572 was obtained, and 
the minimized vibration amplitude of the second degree of 

m u e n w w  

Figure 2. Results with positive real full order dynamic ~ ~ n f r o l l e r  

hewnnjr 

Figure 3. Results with positive real reduced order dynamic Contmller 

freedom was found to be 0.4924. The frequency response 
with and without controller is given in Figure 2 [IO]. 

On the other hand, for the reduced order controller, 
~ ~ T z w ( s ) ~ ~ ~  < y,nzn = 1.6572 was obtained. This time, 
the minimized vibration amplitude of the second degree of 
freedom was calculated to be 0.5650. It should be noted that 
this value is higher than the full order model as expected. 
The frequency response with and without controller is given 
in Figure 3 [lo]. 

Now, as discussed in this paper, for a static controller 
synthesis of this problem, a velocity feedback controller is 
attached to the 2nd mass as seen in Figure 4. A reduced 
order controller is still desired. Once the optimization pro- 
cess is completed with the given constraints, the following 
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Figure 4. Controller on the 2nd m a s  

results are obtained: l lTzul(s)Ilm < -ynain = 1.8572 and the 
minimized vibration amplitude of the second mass is 0.6646. 
The frequency response with and without controller is given 
in Figure 5 .  The designed controller is given as: 

K = 0.7458 

As a result, this controller can be interpreted as a damper 
with one side acting on the 2nd mass, whereas the other side 
is attached to a fixed frame. 

svnem 
- Smkm*Cml,dlsr 

Figure 5 .  Results with positive real reduced order static controller 

5.2. Decentralized controller synthesis 
In this example, aRer giving the results of the 4th order 

decentralized dynamic controller, a decentralized static ve- 
locity feedback controller will be synthesized. In [IO], the 
optimization process revealed that IITlm(s)llm < -ymYmin = 
3.0886, and the minimized vibration amplitude of the second 
degree of freedom was 0.4924. The frequency response with 
and without controller is given in Figure 6 [IO]. 

This time, a decentralized static velocity feedback con- 
troller will be synthesized. In order to achieve this, two 
controllers are attached to the two masses as seen in Figure 7 .  

$. 
I 5. 

I .  

I 
70" 

howsnng~ 

Figure 6. Results with positive real decentralized dynamic controller 

Figure 7. Two controllen on the masses 

After the optimization process, the following results are 
obtained: l /Tzw(s) / lm < -ymln = 1.1886. The minimized 
vibration amplitude of the second mass is 0.5489. The 
frequency response with and without controller is given in 
Figure 8. The designed controller is given as: 

[ Kl 0 ] - - [ 0.6570 
0 ] 0 0.6354 

I< = 
0 Kz 

These two controllers that has been designed can be 
interpreted as dampers with one sides acting on the masses, 
whereas the other sides are attached to a fixed frame. 

5.3. Positive real static controller synthesis 
For a last example, a static velocity feedback controller is 

inserted between the two masses, see Figure 9). The synthesis 
of this controller is as below. 

After the optimization process, the following results are 
obtained: ~ ~ T z u l ( s ) ~ / m  < = 3.9930, and the minimized 
vibration amplitude of the second mass is 2.2455. The 
frequency response with and without controller is given in 
Figure IO.  The designed controller is given as: 

K = 1.7243 
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Figure 8. Results with positive real decentralized static eontrollen 

Figure 9. One ~ ~ n t ~ o l l e r  between the masses 

This computed controller can be, once more, interpreted 
as a damper inserted between the two masses. 

6. Conclusion 
In this paper, a solution method for the H,  control 

problem is presented using linear matrix inequality (LMI) 
approach. Several positive real velocity feedback controllers 
in full order, decentralized, and reduced order form are 
designed in both the dynamic and the static configuration. 
According to the simulations performed, it is concluded that 
the velocity feedback control system reduces the vibration 
response significantly. On the other hand, constraints on 
the system and controller transfer functions increase the 
H ,  norm and give less effective results for the system 
performance. 

One of the advantage of static controllers over dynamic 
ones is that they can be realized using dissipative elements, 
such as dampers. Future research will focus on controllers 
realized by the combination of masses, springs and dampers. 
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