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Abstract—The identification of subsystems and / or compo-
nents that determine a given eigenvalue of the overall system
is a challenging and important tepic. This paper proposes
a set of theorems and definitions that lead to an efficient
procedure for this purpose. In the procedure, the bond graph
representation of dynamic systems is utilized since they lead to
better understanding of the system structure. The procedures
inciude the calculation of eigenvectors. After this calculation an
“effect” matrix is produced that indicates the relative importance
of physical parameters in a selected eigenvalue. In addition to
the relative importance, an efficient physical model reduction
procedure can be constructed. Two examples are given to
illustrate the approach.

Index Terms—Modelling, bond graphs, eigenvalue sensitivity,
physical model reduction.

[. INTRODUCTION

The importance of obtaining sensitivities for an eigenvalue
problem stems from the fact that the partial derivatives of
" the system matrices” with respect to the system parameters
are important for several analysis issues such as efficient
design modifications and gaining insight into the reasens for
discrepancies between structural analysis and dynamic tests.

In this context, eigenvalue derivatives are also useful for
determining the sensitivity of dynamic responses to system
parameter variations. For example, knowledge of the eigenvec-
tor derivatives with respect to physical parameters can help an
engineer optimize a structural design or minimize its sensitiv-
ity to parameters. Such information can be used regularly for
structural design and optimization, and for the improvement
of the agreement between analytical and experimental results.
Furthermore, for structural control systems, eigen derivatives
can be directly applied to system identification and robust
performance tests,

In the last two decades, several methods have been proposed
to analyze the connection between a system variable and
eigenvalues (modes) [31, {2], [19], [20]. For example, the
participation factor approach has been extensively used for
the analysis of power systems [18]. Participation factors are
considered as a measure of the weights of the participation
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of modes in state components. Dynamic systems with large
number of state variables, such as power systems, are often
very complex. Thus, the physical knowledge of the system
might help for analysis: knowing that the system presents an
oscillatory behavior, the interest might be focused on a particu-
lar system eigenvalue (mode), by looking for the physical state
variables most involved in the oscillation, without studying the
entire system. In such cases, the participation factors might be
useful in exploring the state variables that are relevant in the
evolution of a particular eigenvalue (mode).

Since the participation factors can be used to detect the
states that are most involved in an eigenvalue (mode), it
is ciear that once the eigenvalues of interest are identified,
participation factors might help to obtain a reduced order
model of the system which conserves the dynamics of interest.
Although this is the case, the most important problem is still
the identification of subsystems / components that determine
a given eigenvalue. . ‘

In this paper, in order to give a reasonable solution to the
problem of finding a connection between physical parameters
of a system and its eigenvalues, the use of eigenvalue sensitiv-
ity using special state-space descriptions has been investigated.
For this aim, a general analysis of participation factors and
its relation to residues and eigenvalues is also performed.
Throughout the research, it has been observed that the use of
matrices with special components leads to clearer and simpler
results. Analyzing the procedures of obtaining system matrices
using bond graphs leads to a very efficient solution. Thus
in the following sections, first the state-space representation
discussed above will be briefly summarized. Then, the calcu-
lation of eigenvalue sensitivities using eigenvectors and their
relationship to participation factors will be analyzed. Based on
this analysis the “effect” matrix is introduced that indicates
the relative importance of physical parameters in a selected
eigenvalue.

II. STATE SPACE REPRESENTATION OF AN LTI SYSTEM

In this section, we will give a brief review of an existing
procedure for the formulation of the state space equations of
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LT! systems [1], [2]:

An LTI system can be characterized with several matrices
that define the structure of the system. The parameters of
the components can be described by two matrices, one for
independent energy storage elements and one for dissipation
elements [1]. The energy storage elements can be represented
by the matrix S, defined as

z =Sx )]

where z; is the generalized momentum / displacement as-
sociated with the i’th independent energy storage element
(state) and 2z; is the flow / effort as the causal output of
that element. For an LTI system with all of the independent
energy storage elements (a total number of n) are one port,
S is a diagonal matrix of the form diag(s, s2,...,5,], with
s;’s as the parameters of the energy storage elements. From
a computation point of view, if the i’'th independent energy
storage element 1s a capacitance {or an inertance), then s; =
(or respectively s; = )

On the other hand, the dissipation clements can be repre-
sented by the matrix L, which contains the parameter values
as follows: doy; = Ldi,, where di,; and dgy,; stand for
the causal input and causal output of the j’th dissipation
element, respectively. Again, for an LTI system with m one
port dissipation elements, L is diagonal and of the form
diag{l1,2,...,l;m]. From a computation point of view, when
the j°th dissipation component has a flow (or an effort) as the
causal input and an effort (rcspectively a flow) as the causal

output, then I; = R; (respectively I; = #-).
Then, the structure of a system is descnbcd by:
x = Jsgz+Jsrdowt +Tspu )]
din = Jrsz+Jprdow +Jpyu (3)
where,

« Jsg describes the connections among the outputs of the
energy storage elements and the inputs of the energy
storage elements.

e Jsz deseribes the connections among the outputs of the
dissipation elements and the inputs of the energy storage
elements.

+ Jps describes the connections among the outputs of the
energy storage elements and the inputs of the dissipation
elements.

e Jp1 describes the connections among the outputs of the
dissipation elements and the inputs of the dissipation
elements.

o Jsu describes the connections among the inputs from the
sources u and the inputs of the energy storage elements.

o And J.y describes the connections among the inputs
from the sources u and the inputs of the dissipation
elements.

As a result, the system’s state space equation is given by

% = Ax -+ Bu, where

A {J55+JSLL(I Jr L)~ lJLs]S JS (?)
B Jsu + I LI — I L) ey “(c’é
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In the next section the calculation of sensitivities of eigen-
values using eigenvectors will be given.

I11. CALCULATION OF EIGENVALUE SENSITIVITY USING
EIGENVECTORS

Consider the linear time-invariant continuous time system
x = Ax (6

where x € R* and A € R**™. _
Then using modal decomposition the system dynamic ma-
trix can be written as:

A = UAV
A1 0O e 0 vi
0 Ay e 0 vy
=[wou - un] _ : )
0 0 x Q X
0 0 oo An Vz

where U and V are the right and lefi eigenvector matrices
respectively, and A is a diagonal matrix with eigenvalues being
the diagonal elements. It should be noted that the eigenvectors
u; and v; can always be chosen so that u?v,; = 1, or similarly
in matrix form, UV = VU = 1. This means that V is
the inverse of U. Here the A matrix is assumed to have
only simple eigenvalues. In case of repeated eigenvalues, the
diagonal matrix becomes a Jordan form matrix.and the corre-
sponding right and left eigenvectors will become generalized
eigenvectors. The use of generalized eigenvectors and Jordan
form do not alter the derivations given in the next sections.

Using the modal decomposition with given initial conditions
vector x(0), the solution of (6) can be described as:

n
x(t) =) eMuvix(0) ®)
=1
From this equation, one can write the kth component of the
state as follows:

lxk(t)—z At ,ufvIx(0)
i=1
AZe“ uf | vExF(0) + Z
ol

_Z en t_'Pk: xk(o) +Z ehit Z Pkijxj (0)

i

vixi(0)

i=1 =Tk
)
where
Pri = ufv f participation factor (10)
prij = ubv! generalized participation

Here, participation factor, pg;. can be understood as the weight
of the participation of i-th mode in the k-th state component.
Then a participation matrix can be formed as:

P11 P12 Din
P21 P22 Pon

= P = . . . (11)
Pnl  Pn2 Pan

Authorized licensed use limited to: ULAKBIM UASL - ULUDAG UNIVERSITESI. Downloaded on April 15,2010 at 10:42:38 UTC from IEEE Xplore. Restrictions apply.



For this participation matrix, P, and generalized participa-
tion values, the following properties can be identified:

i
1) me' =1, i.e. rows of P sum to one.
i=1
n
2) Zpki =1, i.e. columns of P sum to one.
k=1
mn

3 ZPkij =10.
=1

_In addition to the above basic properties, the following
theorem can be constructed:

Theorem I: The generalized participation values are con-

sidered as the sensitivities of the eigenvalues of the matrix

A:
I\
Bajk
where a;j, represents the jk-th element of matrix A.
Proof

Pri; =

viAu = Aviu = A

Then,
O _ ovIAw)
U e aaw
Vi T Auy;
= LAy,
3q u; +v; g
A
T
= /\,-QYLuZ+v;-F Qéu,—ng&
8qT Og dq
_oy Ovy oA o ou;
= )\1—5-q—uz+ ia—qu,-ﬁ-ViAa—q
xvy
T .
= V?%ui'f')\i?!l—lji*!-/\,‘ 3-_3_111
Og aq( Tu) 0
JA . 8(viu
= r-_ i /\z r
Vi Bq -+ B
=Qasvim =1
A
V?%q—ui

If the parameter ¢ is the element of a,) of the matrix A,

then 5‘9% is a matrix whose elements are all zero and the
1% - .

element 1n j-th row and %-th celumn is one. Thus, one can

write, BA .
T
— =g e
Bajk ok ,
where e; and ey, are the j-th and k-th column of and identity
matrix L, x,, respectively. As a result,
s ) :
B = Vi eiok Wi = ViU = pry
]
O End of proof.
It should be noted that this proof directly leads to the result

(12)

From the descriptions above the following theorem can also
be deduced:

Theorem 2: The entries of the system matrix A can be
expressed as a linear combination of the eigenvalues with the
coefficients being the participation values.

Proof:
The A matrix can be written as:

. .
A= Z )\iuivf
=1

utilizing the dyadic form. Then,

’ P T .
ar; = epAe; ‘
v?

k13

T T
= Z € W Vi €5

i=1
ul

n
= Y Aipwij
i=1

Specifically, for the diagonal elements,

n
ark = 3 AiPki

i=l

is obtained.
O End of proof.

Furthermore, the following lemma can be written without.
much difficulty. .

An examination with the use of linear algebra gives the
following simple connection between the participation values
(prij) and partial fraction expansion residues (R;):

Lemma [: As one can write,

- "\ Ry
(s1—A) 1:23_)\1_

i=

and
At GUAVE ety

n
= Ze’\"tuiv;‘r . = Ri=wv!
=1 *

then the participation values can be written as:

A ko
prij = v}
N Sy
= ek uivz- ej
[Ny
R
& T
> pri; = ey e

The above definitions and theorems leads to a- better un-
derstanding of the relationship between states and physical
parameters, In what follows, by the use of the special form

that participation factors are the sensitivities of the diagonal
a5 of the state-space equations obtained using bond graphs, the

terms of A, ie.
0N B
= Bagk ', ‘r%cffect” matrix will be introduced.

Pri
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IV. EFFECT MATRIX
In the previous sections the following has been derived:

(13

X = Ax
where
A=(Jss+ It LI Iy Is)S =38 (14)

Using this special form of the state-space equations, the
following can be derived from the thearems of the previous
section: o ro 58 |

sacy; ~ + Vaney, ™
where JC stands for energy storage elements. It should be
noted that the partial derivative on the right hand side of this
equations is simply ej,-ta;‘-r as the matrix S is diagonal. Further
more for the energy dissipation elements the following can be
derived:

IN;

“ar_; =vi{Jst g%JLSS)ui (16)
where r stands for energy dissipation elements. Here, for
simplicity, it is assumed that Jp; = 0, i.e. none of the
dissipation elements are directly casually related. This as-
sumption is not a critical assumptions as this is a common
case in dynamic systems, especially in structures. [t should
be noted that when this assumption is valid A becomes
A =(Jsg +Jsr LI 5)S. Similar to the energy storage case
the partial derivative on the right hand side of this equations
is simply eje? as the matrix L is diagonal.

Now that we have calculated the eigenvalue sensitivities we
can form and define two “effect” matrices, namely, one for
energy storage, E o, and one for energy dissipation elements,
Er.

In conclusion the following four step procedure can be
employed to calculate the relative contribution of physical
elements on a selected eigenvalue by forming two matrices:

(1s)

1) After forming the bond graph of the system, calculate
the matrices S, Jgg, L, Js1, Jrg, Jpr and A.

2) Calculate the left and right eigenvector matrices 'V and
U.

3) For each eigenvalue calculate the sensitivities using
equations (15} and (16).

4) Form all the sensitivity values for all eigenvalues in
matrix form such that each row corresponds to one
eigenvalue, and each column corresponds to one energy
storage or energy dissipation element (Matrices Er and
Egr).

The resulting two effect matrices directly gives information
on the sensitivity of all eigenvalues, Furthermore, one can
directly see the effect of each physical element’s effect on
all eigenvalues.

It is important to note that the introduction of the effect
matrix, B constitutes the superset of a method developed
in [2].

In addition to its above mentioned cfficient use, the effect
matrices lead to the physical model reduction of dynamic
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systems, i.e. the physical parameters that do not affect an
eigenvalue of interest can be removed. Furthermore, physical
elements can be put in subsystems that define their specific
behavior. This can be accomplished by looking at the effect
matrices and by checking their relationship using the bond
graph causality assignment.

V. EXAMPLES

In this section two examples will be given, one for distinct
cigenvalues and one for repeated eigenvalues. The first exam-
ple is a physical one, namely the linearized hydraulic line of
a power steering system. The second example is a standard
bond graph system that can easily be found in electrical or
mechanical systems,

A. Hydraulic Line of a Power Steering System

In this section, the eigenvalue sensitivity method will be
applied to a linearized hydraulic line of a power steering
system shown schematically in Figure 1. The names of the
parameters on the bond graph are tabulated in Table I. Detailed
calculations of these parameters can be found in [3]. The
hydraufic line is assumed to be open to air at the valve end,
The effective resistance of the rotary valve indicated by Ry
will thus be zero (Rv = 0 Nsec/m®). The parameter values
for the pipes and the hoses are tabulated in Tables 11 and II1.
This hydraulic line is of order 6.

Ry Rpy Ry

Pp 1 Pyl j P]{: 1 Py
]——LQ 0——"1}——‘0——%1}——50——5!1)—~Q R

; v

A M P A

Cp Iy Cm { ,.,_. Ciny I

hoses
“pummp

T ]

e

4546 mm

pipes
Schematic and bond graph representation of a hydraulic line.

Fig. 1.

For this system, the following system matrices can be
constructed:

=~ 0 0 0 0 0

0 = 0 0 0 o

1o 0 & o 0o o0
=10 0o 0 & o o 7

0 0 0 0 gy O

0 0 0 0 0 g
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TABLE U
IMPORTANT VARIABLES IN BOND GRAPH REPRESENTATION OF THE
HYDRAULIC LINE

As a result, using Matlab, the eigenvalues of this A matrix
are computed as:

Az = —1.8272+10151:

Q Actual pump flow rate (o the outer system — ;
PP Back pressure defermined by the oufer syStem (or pres- /\3'4 - 1.8327 = 1366'1?
P | sure at the pump outiet porf) dse = —1.B3324352.74¢
Rpp | Resistance associated with the n'th pipe, n =1...3, . . s
Try | Tnertance assoeiied with the n'th pipe, 7 = 1...3. After the calculation of associated eigenvectors of these
Cpy_ | Capacitance assoctated with the n’th pipe, n = 1...3. eigenvalues, the effect matrices are calculated as:
Can | Capacitance assoctated with then’th hose, n=1...72.
)y | Flow rate from the hydraulic line 0 0 0 7.5223 0.0001 0
0 0 0 7.5223 0.0001 0
T
PARAMETER VALUES FOR PIPES ) ) )
. ¢ 0 0 0.0010 0.0010 0
Pipe # Ip [m] 1p 155] | rp 52 cp (B2 0 0 0 0.0010 0.0010 0
| 1.869 x 10-% | 1.45 % 100 5.30 x 10 6.72 x 10— L
2 3.687 x 12—; 5.90 XE: 1.43 x 10 1.81 xL:;“ 0.3448 0 0
3 7.8 x 10 8.24 X 10 3.02 x 10 3.83 X 10 0.3448 0 O
0 0.0257 0.4852
Er=10e-000x ) o 0257 0.4852
¢ 0 ¢ 1 -1 0 0 01025 0.1216
0o 0 ¢ 0 1 -1 0 0.1025 0.1216
o o0 0 0 0 1 . .
Jss=1 1 0 0 0 0 0 (18)  Here, in matrix E;¢r each column corresponds to one energy
1 -1 6 0 0 0 storage element (in the order of matrix 8), and each row
0 1 —1 0 0 0 correspond to one eigenvalue. Similarly, in matrix Eg each
column corresponds to one energy dissipation element {in the
Ep 0 0 order of matrix L), and each row correspond to one eigenvalue.
L= 0 Rpy O Jor = 0343 (19)  From the effect matrices, one can observe that Bp; and [p
0 0 Rps have the most effect in A1 2. This result is consistent with the
previous result [3] that the pipe resistance, Rp;, needs to be
-1 0 0 ' . - . o .
_ 0 -1 0 increased in order to eliminate the high vibration value. This
0 0 -1 parameter is directly related to the length, so we should change
Jsp = 0 0 o (20) the length to get a reduced vibration frequency.
UV B. A Simple Physical Example with Repeated Roots
0 o 0 Consider the system given by its bond graph in Figure 2, [2].
100000 All parameter values except a are shown on the figure. For
Jes=1{01 0 0 0 0 (21) this example @ = 1 is chosen.
001000
D e ]
With these matrices the A matrix of the system is obtained E Iitl E Ll
as: : ' T
—Bp 1 ~1 : i
B hn o, T D : RN =
0 T ¢ 0 =z T v Oyl | ? Seafy 0 F—>Cx1
0 0 fm 0 0 5 ' n Voo
A= e P3 H2 (22) | e e e e mmmmcmmmm e '
oy 0 0 0 0 0
Lo 9 0 0 o
7 7 i . ‘
F1 2 1 Fig. 2. A simple physical system.
] T = 0 0 0
P2 P3
i For this system, using the same approach as in the first
TABLE HI example the following system matrices can be constructed:
PARAMETER \fA-LUES FOR HOSES . 1_11_ 0 0 O . 0 -1 G 0
: i
Hose # Lz [m)] Gy [25] s=| % = ? v g=] L 0 ¢ (13
i 4546 x 101 | 1.67 x 10712 0 0 5 O 0 0 0
2 2183101 | 80 x 10 17 0 0 0 & 10 -1 0
A (23)
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With these two matrices the A matrix
obtained as:

of the system is
0
0

0

1

Iz

This system produces the symbolic
E/E C 72, and +
the numerical eigenvalues are calculated as: +i, i, which
indicates that we have two repeated roots. Thus we will have
generalized eigenvectors. As a result, using Matlab the right
and left eigenvector matrices for this A matrix are computed
as:

S oo
oo OQlH
of o o

eigenvalues as:
L—i. With the chosen parameter values
LCy

U = [ w; uwy Uz Ug ] 25
V = [ V] Vo V3 V4 ) (26)
where
Q ] [ 0.5000
. = 0 o — | —0-5000i
VT 025000 |02 T 0
0.2500 | | —0.2500i
o ] [ 0.5000
3 0 _ | 0.5000i
Y= posooi | M T 0
0.2500 | | 025004
and . _
0 1.0000
_ | —roooo | —1.0000i
VI= | —ap0000i {0V T 0
2.0000 | | 0
0 [ 1.0000
oo | 10000 ) O 10000
3= 200000 | 74T 0
2.0000 | | o

As this system has repeated eigenvalues the eigenvectors are
the generalized eigenvectors. But as it has been explained
before, this does not alter the result. Thus the effect matrix,
E;c (there are no dissipation elements in this system), is
calculated as:

05000 0.5000

0 0
Eo = 0.5000 0.5000 0 0
©c= 0 0 0.5000 0.5000
0.5000 0.5000 0 0

In this matrix each column corresponds to one energy storage
element (in the order of matrix S), and cach row correspond
to one eigetivalue, specifically, in this case the eigenvalues
are in order of ¢,1, —i, —¢. It can be observed that the results
are remarkable. The effect matrix directly indicates that the
weights of physical components on the eigenvalues, for this
set of parameters, are the same. It can also be observed that
only I1 — € effect one set of eigenvalues, and I — Cy effect
the other. This is consistent with the symbolic calculation
obtained.
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VI. CONCLUSIONS

In this paper, a set of theorems and definitions that lead
to an efficient procedure for the identification of subsystems
and / or components that determine a given eigenvalue of the
overall system is proposed. In the procedure, a special type of
state-space description obtained from bond graphs is utilized.
After the calculation of eigenvectors and the defined “effect”
matrices, the relative importance of physical parameters in
a selected eigenvalue is readily obtained. Two examples are
given to iliustrate the results.
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