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Abstracf-The identification of subsystems and I or compo- 
nents that determine a given eigenvalue of the overall system 
is a challenging and important topic. .This paper proposes 
a set of theorems and definitions that lead to an efficient 
procedure for this purpose. In the procedure, the bond graph 
representation of dynamic systems is utilized since they lead to 
better understanding of the system structure. The procedures 
include the calculation of eigenvectors. After this calculation an 
‘#effect” matrix is produced that indicates the relative importance 
of physical parameters in a selected eigenvalue. In addition to 
the relative importance, an efficient physical model reduction 
procedure can be constructed. Two examples are given to 
illustrate the approach. 

Index Terms-Modelling, bond graphs, eigenvalue sensitivity, 
physical model reduction. 

1. I N T R O D U C T I O N  

The importance of obtaining sensitivities for an eigenvalue 
problem stems from the fact that the partial derivatives of 
the system matrices; with respect to the system parameters 
are important for several analysis issues such as efficient 
design modifications and gaining insight into the reasons for 
discrepancies between structural analysis and dynamic tests. 

In this context, eigenvalue derivatives are also useful for 
determining the sensitivity of dynamic responses to system 
parameter variations. For example, knowledge ofthe eigenvec- 
tor derivatives with respect to physical parameters can help an 
engineer optimize a structural design or minimize its sensitiv- 
ity to parameters. Such information can he used regularly for 
structural design and optimization, and for the improvement 
of the agreement between analytical and experimental results. 
Furthermore: for structural control systems, eigen derivatives 
can be directly applied to system identification and robust 
perfomiance tests. 

In the last two decades, several methods have been proposed 
to analyze the connection between a system variable and 
eigenvalues (modes) [3], [2], [19], [20]. For example, the 
participation factor approach has been extensively used for 
the analysis of power systems [IS]. Participation factors are 
considered as a measure of the weights of the participation 
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of modes in state components. Dyndmic systems with large 
number of state variables, such as power systems, are often 
very complex. Thus, the physical knowledge of the system 
might help for analysis: knowing that the system presents an 
oscillatory behavior, the interest might be focused on a particu- 
lar system eigenvalue (mode), by looking for the physical state 
variables most involved in the oscillation, without studying the 
entire system. In such cases, the participation factors might be 
useful in exploring the state variables that are relevant in the 
evolution of a particular eigenvalue (mode). 

Since the participation factors can be used to detect the 
states that are most involved in an eigenvalue (mode): it 
is clear that once ihe eigenvalues o f  interest are identified, 
participation factors might help to obtain a reduced order 
model of the system which conserves the dynamics of  interest. 
Although this is the case, the most important problem is still 
the identification of subsystems I components that determine 
a given eigenvalue. 

In this paper, in order to give a reasonable solution to the 
problem of finding a connection between physical parameters 
of a system and its eigenvalues, the use of eigenvalue sensitiv- 
ity using special state-space descriptions has been investigated. 
For this aim, a general analysis of participation factors and 
its relation to residues and eigenvalues is also performed. 
Throughout the research, it has been observed that the use of 
matrices with special components leads to clearer and simpler 
results. Analyzing the procedures of obtaining system matrices 
using bond graphs leads to a very efficient solution. Thus 
in the following sections, first the state-space representation 
discussed above will be briefly summarized. Then, the calcu- 
lation of eigenvalue sensitivities using eigenvectors and their 
relationship to participation factors will be analyzed. Based on 
this analysis the “effect” matrix is introduced that indicates 
the relative importance of physical parameters in a selected 
eigenvalue. 

I I .  STATE SPACE REPRESENTATION OF AN LTI SYSTEM 

In this section, we will give a brief review of an existing 
procedure for the formulation of the state space equations of 
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LTI systems [I] ,  [2]: 
An LTI system can be characterized with several matrices 

that define the structure of the system. The parameters of 
the components can be described by two matrices, one for 
independent energy storagc elements and one for dissipation 
elements [I]. The energy storage elements can be represented 
by the matrix S, defined as 

z = s x  (1) 

where xi is the generalized momentum / displacement as- 
sociated with the i'th independent energy storage element 
(state) and zi is the flow / effort as the causal output of 
that element. For an LTI system with all of the independent 
energy storage elements (a total number of n) are one port, 
S is a diagonal matrix of the form diag[sl, sa,. . . , s,], with 
si 's as the parameters of the energy storage elements. From 
a computation point of view, if the i'th independent energy 
storage element is a capacitance (or an inertance), then s i  = 
& (or respectively si = $: 

On the other hand, the dissipation elements can be repre- 
sented by the matrix L, which contains the parameter values 
as follows: do,, = Ldi,, where din, and doZI1) stand for 
the causal input and causal output of the j ' th  dissipation 
element, respectively. Again, for an LTI system with m one 
port dissipation elements, L is diagonal and of the form 
diag[ll, 1 2 , .  . . , lm]. From a computation point of view, when 
the j ' th dissipation component has a flow (or an effort) as the 
causal input and an effort (respectively a flow) as the causal 
output, then I ;  = Rj (respectively I j  = +). 

Then, the structure of a system is descAbcd by: 

x =  Jssz + JsLdout + Jsuu (2) 

din = J L ~ Z  + JLLd,,t + JLUU (3) 
where, 

J s s  describes the connections among the outputs of the 
energy storage elements and the inputs of the energy 
storage elements. 
JSL describes the connections among the outputs of the 
dissipation elements and the inputs of the energy storage 
elements. 
JLS describes the connections among the outputs of the 
energy storage elements and the inputs of the dissipation 
elements. 
JLL describes the connections among the outputs of the 
dissipation elements and the inputs of the dissipation 
elements. 
JSU describes the connections among the inputs from the 
sources u and the inputs of the energy storage elements. 
And JLU describes the connections among the inputs 
from the sources U and the inputs of the dissipation 
elements. 

In the next section the calculation of sensitivities of eigen- 
values using eigenvectors will be given. 

111. CALCULATION O F  EIGENVALUE SENSITIVITY USING 
EIGENVECTORS 

Consider the linear time-invariant continuous time system 

X = A x  (6) 

where x E E" and A t RnXn. 

tnx can be written as: 
Then using modal decomposition the system dynamic ma- 

where U and V are the right and left eigenvector matrices 
respectively, and A is a diagonal matrix with eigenvalues being 
the diagonal elements. It should be noted that the eigenvectors 
ui and vi can always be chosen so that uTvi = 1, or similarly 
in matrix form, UV = VU = I. This means that V is 
the inverse of U. Here the A matrix is assumed to have 
only simple eigenvalues. In case of repeated eigenvalues, the 
diagonal matrix becomes a Jordan form matrix,and the corre- 
sponding right and left eigenvectors will become generalized 
eigenvectors. The 'use of generalized eigenvectors and Jordan 
form do not alter the derivations given in the next sections. 

Using the modal decomposition with givcn initial conditions 
vector x(O), the solution of (6) can be described as: 

n 

x(t) = exstu,v:'x(0) (8) 
t=1 

From this equation, one can write the kth component of the 
state as follows: 

where 

(10) 
pki  4! U ~ V ;  participation factor 

pb i j  fi ufvf generalized participation 

Here, participation factor, p'i, can be understood as the weight 
of the participation of a-th mode in the k-th state component. 
Then a participation matrix can be formed as: 

Pll PI2 '.. As a result, the system's state space equation is given by 
x = Ax + Bu, where 

A = [Jss + J,sLL(I - JLLL)-'JLS] S E JS ($J 
.2& B = Jsu + JsLL(I - JLLL)-~JLU . .  P,l Pn2 ..' 
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For this participation matrix, P, and generalized participa- 

I j k p x .  = 1, i.e. rows of P sum to one. 

2) e p k t  = 1, i.e. columns of P sum to one 

tion values, the following properties can be identified: 

* = I  

k = l  

2=1 

In addition to the above basic properties, the following 
theorem can be constructed 

Theorem I :  The generalized participation values are con- 
sidered as the sensitivities of the eigenvalues of the matrix 
A: 

where ajk represents the jk-th element of matrix A. 
proof: 

vTAu~ = A ~ v T u ~  = X i  

Then, 

axi - ~ ( v T A u ~ )  - -  
a9 84 

- aV: Aui +vT- a(Aui) _ -  
aq v aq . 

If the parameter q is the element of a,* of the matrix A, 
then e is a matrix whose elements are all zero and the 
element in j-th row and k-th column IS one. Thus, one can 
wnte. 

where ej and er are the j-th and k-th column of and identity 
matrix I,,,, respectively. As a result, 

From the descriptions above the following theorem can also 
be deduced: 

Theorem 2: The entries of the system matrix A can be 
expressed as a linear combination of the eigenvalues with the 
coefficients being the participation values. 
__ Proof: 

The A matrix can be written as: 

n 

A = 1 X;u;vT 
,=I 

utilizing the dyadic form. Then, 

Specifically, for the diagonal elements, 

is obtained. 
0 End of proof. 

Furthermore, the following lemma can be written without 
much difficulty 

An examination with the use of linear algebra gives the 
following simple connection between the participation values 
@kyj  and partial fraction expansion residues (RJ :  

Lemma I :  As one can write, 

.R; 
(SI - A)-' = __ 

s - xi 
i=l 

and 

eAt ~ .uAVt = UeAtV 
n 

- - Ee'ituivT . = U;"? 

i=1 

then the participation values can be written as: 

P k i j  U:.: 

= e,TuivTej - 
R , ." ~~. 

0 End of proof. +pk , j  ezR;ej 

It should be noted that this proof directly leads ta the result The above definitions and theorems leads to a better 

that factors are the sensitivities of the diagonal derstanding of the relationship between states and physical 
parameters. In what follows, by the use of the special form 

.%;.,of the state-space equations obtained using bond graphs, the 
terms of A, i.e.: ax, -,. Pkl = - y '.r"effect" matnx will be introduced aakb 
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IV. EFFECT MATRIX 
In the previous sections the following has been derived 

X = A x  (13) 

where 

A = (Jss + JSLL(I- JLLL)-’JLS)S E JS (14) 

Using this spccial form of the state-space equations, the 
following can be derived from the theorems of the previous 

(1 5 )  
as section: 

- vT(J- ax, 
bo,- a(rc), lUZ 

where IC stands for energy storage elements. It should be 
noted that the partial derivative on the right hand side of this 
equations is simply e.eT as the matrix S is diagonal. Further 
more for the energy dissipation elements the following can be ? 3  

where T stands for energy dissipation elements. Here, for 
simplicity, it is assumed that JLL E 0, i.e. none of the 
dissipation elements are directly casually related. This as- 
sumption is not a critical assumptions as this is a common 
case in dynamic systems, especially in structures. It should 
be noted that when this assumption is valid A becomes 
A = (Jss + JsLLJLs) S. Similar to the energy storage case 
the partial derivative on the right hand side of this equations 
is simply e j e r  as the matrix L is diagonal. 

Now that we have calculated the eigcnvalue sensitivities we 
can form and define two “effect” matrices, namely, one for 
energy storage, Elc, and one for energy dissipation elements, 
E R .  

In conclusion the following four step procedure can be 
employed to calculate the relative contribution of physical 
elements on a selected eigenvalue by forming two matrices: 

1) After forming the bond graph of the system, calculate 
the matrices S, Jss, L, JSL, JLS, JLL and A. 

2) Calculate the left and right eigenvector matrices V and 
U. 

3 )  For each eigenvalue calculate the sensitivities using 
equations (15) and (16). 

4) Form all the sensitivity values for all eigenvalues in 
matrix form such that each row corresponds to one 
eigenvalue, and each column corresponds to one energy 
storage or energy dissipation element (Matrices Erc and 
ER). 

The resulting two effect matrices directly gives information 
on the sensitivity of all eigenvalues. Furthermore, one can 
directly see the effect of each physical element’s effect on 
all eigenvalues. 

It is important to note that the introduction of the effect 
matrix, Erc constitutes the superset of a method developed 
in [2]. 

In addition to its above mentioned efficient use, the effect 
matrices lead to the physical model reduction of dynamic 

systems, i.e. the physical parameters that do not affect an 
eigenvalue of interest can be removed. Furthermore, physical 
elements can be put I’n subsystems that define their specific 
behavior. This can be accomplished by looking at the effect 
matrices and by checking their relationship using the bond 
graph causality assignment. 

V. E X A M P L E S  

In this section two examples will be given, one for distinct 
cigenvalues and one for repeated eigenvalues. The first exam- 
ple is a physical one, namely the linearized hydraulic line of 
a power steering system. The second example is a standard 
bond graph system that can easily be found in electrical or 
mechanical systems. 

A.  Hydraulic Line of a Power Steering System 

In this section, the eigenvalue sensitivity method will be 
applied to a linearized hydraulic line of a power steering 
system shown schematically in Figure 1. The names of the 
parameters on the bond graph are tabulated in Table I. Detailed 
calculations of these parameters can be found in [3]. The 
hydraulic line is assumed to be open to air at the valve end. 
The effective resistance of the rotary valve indicated by RI, 
will thus be zero (Rv = 0 Nsec/m5). The parameter values 
for the pipes and the hoses are tabulated in Tables I I  and H I .  
This hydraulic line is of order 6. 

Fig. I .  

For this system, the following system matrices can be 

Schematic and bond graph representation o f a  hydraulic line. 

constructed: 

l n o o n  
0 0 0 q 

0 2 - 0  0 0 
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TABLE 
IMPORTANT VARIABLES I N  BOND GRAPH REPRESENTATION OF T H E  

HYDRAULIC LINE 

QP I Actual pump Row rate Lo the outer sysiem - I Back pressure delermined by the outer system (or DES- 

TABLE 11 
PARAMETER VALUES FOR PIPES 

1 1:: 0 0 0 1 - 1  
0 0 1 - 1 0  

As a result, using Matlab, the eigenvalues of this A matrix 
are computed as: 

Xi,? = -1.8272 f 101512 
X3,d = -1.8327+ 1366.12 

= -1.8332 + 352.74i 

After the calculation of associated eigenvectors of these 
eigenvalues, the effect matrices are calculated as: 

r o o o 7.5223 O . O O O ~  o 1 
0 0 0 7.5223 0.0001 0 
0 0 0 0.0001 0.0001 0.0084 
0 0 0 0.0001 0.0001 0.0084 

0 0 0 0.0010 0.0010 
0 0 0 0.0010 0.0010 

0 O I  

O l  1 ::E: 0 0 
0 

0 0.0257 0.4852 
0 0.0257 0.4852 
0 0.1025 0.1216 

ER = 1.0e - 006 * 

1 0 0.1025 0.1216 1 
(18) Here, in matrix E I ~  each column corresponds to one energy 

storage element (in the order of matrix S) ,  and each row 
correspond to one eigenvalue. Similarly, in matrix ER each 
column corresponds to one energy dissipation element (in the 
order of matrix L), and each row correspond to one eigenvalue. 
From the effect matrices, one can observe that Rpl and l p l  

have the most effect in XI,*. This result is consistent with the 
previous result [3] that the pipe resistance, Rpl, needs to be 
increased in order to eliminate the high vibration value. This 
parameter is directly related to the length, so we should change 
the length to get a reduced vibration frequency. 

(19) 

I ! 0 1 - 1 0  0 0 

0 0 0 0 0  1 

1 - 1 0 0 0  0 
Jss= -1 0 0 0 0 0 

L =  [ RP1 0 R P ~  0 ] JLL = O z x 3  

0 0 f iP3  

-1 0 0 
-1 0 

J S L =  1 i1 1 (20) 

as: 

A =  

B. A .Simple Physical Example with Repeated Roots 
Consider the system given by its bond graph in Figure 2, [2]. 

All parameter values except LY are shown on the figure. For 
this example o( = 1 is chosen. (21) 

With these matrices the A matrix of the system is obtained 
, -__--__- .__- .__-______________ 

11:l I 12:l 
T : T  

1 [ 0 0 1 0 0 0  

i o 0 0 0 0  
J L S =  0 1 0  0 0 0 

\ 

TABLE Ill 
PARAMETERVALUES FORHOSES 

, -11 -, , 
I 
2 (1 2.183 x lo-' 1 8.0 x 

1) 4.546 x lo-' I 1.67 x IO-" 

I 
i C1:l L-l 1 -+Sf:aJ, k-+ 0 W G : l  

J I  ; I2 (22) :.___.___.___._________________) 

Fig. 2. A simple physical system. 

For this system, using the same approach as in'the first 
example the following system matrices can be constructed: 

0 - 1  0 0 
1 0  0 0  

0 0 0 . 2  1 0  - 1 0  

' 0 0 0  

(23) 
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With these two matrices the A matrix of the system is VI. CONCLUSIONS 
obtained as: In this paper, a set of theorems and definitions that lead 

to an efficient procedure for the identification of subsystems 
and i or components that determine a given eigenvalue of the 
overall system is proposed. In the procedure, a special type of 
state-space description obtained from bond graphs is utilized. 
After the calculation of eigenvectors and the defined “effect” 
matrices, the relative importance of physical parameters in 
a selected eigenvalue is readily obtained. Two examples are 
given to illustrate the 

0 0  
1 0  0 0  

(24) 

This system produces the symbolic eigenvalues as: 

the numencal eigenvalues are calculated as: hi, hi, which 
indicates that we have two repeated roots. Thus we will have 

and left eigenvector matrices for this A matrix are computed 

*Gi. With the chosen parameter 

generalized eigenvectors. As a result, using Matlab the right REFERENCES 
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where 
0.5000 

-0.5000i Cambridge, MA, 1961 

0 0.5000 
0.5000i 

and 
0 1.0000 Pergamon Press, Oxford, 1975. 

-1.00ooi 

0 1.0000 Ph.D. Thesis, University of Twente. Enschede, Netherlands, 1984. 

vQ = [ 1.0000 ] [ ‘.Om.;l  

As this system has repeated eigenvalues the eigenvectors are 
the geiieralized eigenvectors. But as i t  has been explained 
before, this does not alter the result. ~h~~ the effect matrix, 
Erc (there are no dissipation elements in this system), is 
calculated as: 

2.0000i ,v4 = 
2.0000 

319, pp, 243-256, 1985. 

0 0.5000 0.5000 

0 0.5000 0.5000 
0 

0.5000 0.5000 0 

0.5000 0.5000 0 

In this matrix each column corresponds to one energy storage 

to one eigenvalue, specifically, in this case the eigenvalues 

are remarkable. The effect matrix directly indicates that the 
weights of physical components on the eigenvalues, for this 
set of parameters, are the same. It can also be observed that 
only 4 - C1 effect one set of eigenvalues, and I2 - CZ effect 
the other. This is consistent with the symbolic calculation 
obtained. 

element (in the of mahix and row correspond 

are in order of i ,<, - i , - i .  It can be observed that the results 
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