
Modeling and Full State Feedback Adaptive 
Control of a Two Dimensional Linear Motor 

Ali Yurdun Orbak 
Industrial Engineering Department, Uludag University 

Bursa, Turkey 16059 
Email: orbak@uludag.edu.tr 

A b s t r a c d n  food processing and similar types of 
industries, packaging is performed in two steps, namely 
“primary packaging” and “secondary packaging”. Generally 
the placement of the product on the pallets is done using 
custom designed mechanisms and conveyor systems. The 
desire for flexibility in such systems, produced robotic 
palletizingjcollation systems. These systems usually include a 
cell incorporating a two-dimensional linear motor. This paper 
presents the development of an adaptive control for this type 
of linear motor. For this aim, first the modeling of the linear 
motor has been completed. After deciding on the best model, 
an adaptive controller has been suggested to improve the 
reliability of the system. 

Inder Terms-Modeling, adaptive control, full state 
feedback control, two dimensional linear motors. 

1. INTRODUCTION 
In a typical food processing industry, the “primary 

packaging” of the product may include boxes, plastic 
wrapping, aluminum or steel cans. Before food is shipped, 
it is collated into “secondary packaging”, which may 
include boxes or trays. In general, the collation of the 
product into secondary packaging and its placement on the 
pallets is done via custom designed mechanisms and 
conveyor systems The end result is an efficient, reasonably 
reliable system, which nevertheless is very limited in 
flexibility and requires periodic maintenance. Any change 
in the size of the pack, the pallet or the secondary 
packaging requires significant changes in the system 
hardware. This desire for flexibility was the motivation for 
a robotic palletizingicollation system. 

Such a robotic palletizing system had been built at 
Massachusetts Institute of Technology (MIT) for research 
and development. It is a cell incorporating a two- 
dimensional linear motor. The motor moves on the 
horizontal plane underneath a fennmagnetic platen, from 
which it is separated by an air gap. An end effector is 
attached underneath the motor for picking up the packs 
from a conveyor belt and placing them on a pallet. This 
system had proven to be very fast and maintenance free. 

However, the system without any controller does not 
have a reliable response. Proportional-integral-derivative 
(PID) control algorithms are unable to meet this basic 
requirement. AAer tuning the .parameters of these 
controllers to optimize the tracking performance, it happens 
to be that tracking is optimized for some specific conditions 
only. The sources of  this problem are mainly the 
nonlinearities introduced by the magnetic field distribution 
and eddy cuments at high speeds. This work presents the 
development of an adaptive control for this linear motor. 
An adaptive controller has been suggested to improve the 
reliability of  the system. 

In the next section, first, the modeling of  the .two- 
dimensional linear motor is given and its response is 
compared to the response of the actual motor. 

11. MODELING OF THE LINEAR MOTOR 

A prerequisite for the development of a feedback control 
for the two dimensional linear electric motor is through the 
understanding of  its dynamics. The standard tool for this 
understanding is the formulation of the mathematical model 
of the motor. In this context, “motor” and “plant” both refer 
to the physical entity or real system that is worked with. 

In this section, the results obtained in [Z] are briefly 
presented. This model analyzes the process of the 
electromechanical energy conversion in detail. Besides, the 
model takes into account the electromagnetic loss 
mechanisms in order to match the motor dynamics better 
than previous attempts [7]. 

As it is explained in section Ill, this model in its original 
version cannot be used in an adaptive control scheme. 
Consequently, many simplifications are applied in order to 
get a linear transfer function representing the plant of  the 
system. With the help of simulation software the detailed 
model is tested and the results compared to measurements 
of the real plant in order to investigate its accuracy. Finally, 
a comparison between the detailed or fourth order model 
and the simplified models is presented so as to show the 
influence of each simplification. 

A. Fourth Order Model 
In the following subsections the equations describing 

the physical properties of the linear motor in the electrical, 
magnetic and mechanical domains .are presented. This 
section is intended to be a brief presentation of previous 
results [2, 6, 71. Thus, details related to the specific 
configuration of the system are not discussed. Instead, only 
the main concepts are involved. 

i. Underlying Equations 
This presentation of a detailed model of the two- 

dimensional linear electric motor includes a first 
simplification performed on the original development. This 
first simplification consists on taking into account the 
reluctance of the air gap only. In other words, the total 
reluctance of a magnetic circuit consisting of a motor core 
with legs and a base, an air gap, and a platen base is 
considered to be very close to the reluctance of the air gap 
only. The justification for this assumption is the fact that 
the relative permeability of the air is much smaller than that 
of the silicon steel used in cores and platen bases. 
Therefore, under same conditions of magnetic flux and 
transversal area, the reluctance of the air gap is much, much 
higher than that of the motor core ,and platen. 
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Consequently, the reluctance of entire path is 
approximated by the reluctance of the air gap. Because the 
geometry of the air gap changes with the movement of the 
motor with respect to the platen, the reluctance happens to 
be a function of position only. This reluctance is modeled 
as a sinusoid of position with a period of one pitch. 
Obeying the x coordinate axis definition of Figure I, the 
reluctances are reoresented bv: 

R,G = R,c; (x) = RGO [ 1 - ke COS (2r)) - I = 6.8 (4) 

where 

( 5 )  
392500 

H 
RG0 =- 

ke = 0.45 (6) 
On the other hand, if it is assumed that the magnetic flux 

confines itself to the ferromagnetic material, that leakage 
and fringing can be neglected, and that the permanent 
magnet can be modeled as a source of magnetic flux 
incorporating a magnetomotive force MPh, and a reluctance 
RpM, the expressions for the magnetizing currents on phases 
A and B are: 

(7) 
"a =- (R: +Rib, + (R5 + R6 X2R?6 + RPM k667 

(R5+R6XR5+R6+2RPM)n ( R 5 + R 6 + 2 R P b / ) n  

(8) 
where: 

. .  
and n = 80, is the number of turns of each winding of each 
phase and of each axis of the linear motor. 
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Fig. I. A simple Sawyer linear motor, principle ofaperation 
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Next, the magnetic flux through each one of the eighth 
pole faces of a set constituted of a phase A and a phase B 
like the one represented in Figure I is: 

(10) R2,!4/,M - (R, + .Q/w )%A 

(RI + R2 b R 1 2  + R P M )  
4 =  

Because the reluctance of the magnetic path is 
approximated by taking into account the reluctance of the 
air gap only: 

h = - 4  $4=-h (14) 
6 7 = - $ 5  @8=-46 (15) 

And the force generated by the electromechanical energy 
conversion is: 

(16) 
The core and platen losses due to magnetic hysteresis 

and eddy currents in the mechanical domain are represented 
by a drag force. This agrees with the fact that the 
magnitude of eddy current losses is proportional to the time 
derivative of the magnetic flux, which is supposed to  be 
directly proportional to the velocity. 

Because the motor is gliding on an air cushion during 
operation, if the aerodynamic friction is neglected, this air 
bearing system can be considered lossless. Therefore, the 
net force acting on the total mass of motor and load must be 
the force generated minus the drag force. The drag force, as 
function of velocity only, was defined to be: 

Fd = 1 . 2 9 5 ~ ' ~  +52.213v (17) 

(19) 

Finally, if we define: 
$23 = 42 43 (18) 

467 = 1 6  + 47 
then the state space representation of the system can be 
expressed as: 

w=%!+ ( R?+R:)MPMRDw - 
dt 

( R I  + R 2 X 2 R , 2 + R P M ) R D W ~ ? 3  

n (RI + Rz I R I  + R2 + 2RISM )E' 

(RI  + RZ +%A, )n2 

M=%+ (R: + @)MPMRUW - 
dt n (R, + R6XRs + R6 + 2Rpbf )E' 

(R5 + R6 1 2 R S 6  + RPM )RI>W@667 

(R, + R6 + 2RpM)n2 
dv - F - F d  
dt m 

-= h V  
dt 

where: 
=Voltage supplied by phase A driver so as to induce the 

commanded current i, = 4i,, on phase A. 

ut( =Voltage supplied by phase B driver so as to induce the 
commanded current i, = 4i,, on phase B. 
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M P M  = Magnetomotive force ofthe permanent magnet=l547A 
RpM = Reluctance of the permanent magnet = 5707000 H~‘ 
RDW =Driver internal resistance + module winding resistance 

p = platen pitch = motor pitch= 0.001016 m 
Note that the Normag two-dimensional linear electric 

motor features four windings per phase per axis. Therefore 
i, = 44, and i ,  = 4i,,, for axis X and Y. 

ii. Model Simulation and Comparison with Plant Output 
The fourth order model predicts to a very high degree 

the behavior of the real system when the usual test 
trajectories are taken as inputs. In this section a comparison 
of the model simulation output and the real plant output is 
discussed. 

Simulink’ was used to simulate the response of the 
system and test the model with different inputs. For the 
present analysis, all the test trajectories selected were 
confined to be one-dimensional trajectories, i.e. only along 
the X-axis. As it is seen from Figure 2, the behavior of the 
plant for this kind of trajectories can be reasonably 
predicted by the fourth order model. The only difference 
which can be detected is the higher frequency of the 
oscillations around the limits of the trajectory on the 
simulation than those on the real plant measurement. 

= 3 l  R 
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Fig. 2. Plant output and fourth order model simulation 

B. Second Order Model 
In this section the equations describing a reduced second 

order model are presented. The simplification is motivated 
by the desire to model the linear motor plant by means of a 
much simpler representation than the one presented in the 
preceding section. The simplification introduced here 
consists on the elimination of the current driver dynamics. 
Each one of the four drivers required to energize a single 
linear motor introduces two new state variables to our 
system. Because it is assumed that all the drivers are 
calibrated so as to have exactly the same DC gain and the 
same settling time, it is reasonable to consider only two 
total states to be introduced by the dynamics of the four 
drivers. 

These drivers are the UD-12 model from Parker 
Compumotor which is a regulated current pulse-width 
modulated power amplifier. The input to the driver is the 
commanded current. For the Normag linear motor, the 
maximum current is set to 4 amps. The driver operates as 
an effort source, it is to say; the output of the driver at any 
time is the voltage required to induce the commanded 
magnetizing current through the winding. This amplifier, or 
driver, incorporates an internal loop to ensure that the 
output current tends to the commanded value. The 

bandwidth of these drivers is greater than 2500 Hz, with a 
switching frequency of 20000 Hz. The transfer function 
describing the dynamics of each amplifier is [ 3 ,7 ] :  

(20) 
230000s+256000000 

2 . 2 1 6 ~ ~  +46316s 
Fd ($1 = 

Obviously, the justification for the elimination of the 
driverjynamics from the linear motor model assumes that 
the drivers can be modeled as constant gains. 

I .  Underlying Equations 
If U is the commanded position, then the plant under 

open loop control (stepper control) can be modeled as a 
nonlinear second order system. Because the amplifier 
dynamics is assumed to be a constant gain: 

The air gap reluctances are calculated as before, but the 
expressions for the fluxes through the pole faces are 
simplified to: 

The force equations do not change. It is to say, equation 
(16) is still valid as well as equation (20) for the drag force. 

ii. Model Simulation and Comparison with Plant Output 
Again, a block diagram for the new model was 

constructed and the response to the same input commented 
above was simulated (see Figure 3). 

As it is seen, this model does not predict the behavior of 
the plant as the fourth order model does. The main 
difference is on the amplitude of the oscillations about the 
commanded trajectory. However, this nonlinear model can 
be simplified and latter linearized by feedback 
liberalization, as it is explained in the next sections. It was 
decided that the adaptive controller should be developed on 
this simple model and latter tested on the more complex 
and detailed models. 

C. Approximated Model 
In this section an approximation of the second order 

model is introduced. As it is seen below, the result is still a 
nonlinear model. Fortunately, the expression reached is 
much simpler and suitable for feedback linearization. 

i. Underlying Equations 
If the entire set of equations describing the dynamics 

considered on the second order model are studied carefully, 
it can be concluded that the force generated (without drag 
force) is a function of commanded and actual positions 
only. This statement agrees with the result of a previous 
work, which modeled the linear motor as a spring-mass 
system. Therefore, the force generation surface was studied 
and approximated to: 
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Fig. 3. Second order model simulation. 

F = Asin( y) (26) 

 where U is the commanded position, x the actual 
position and A is a coefficient, which was set to 460 to 
minimize the error- between the model and the 
approximation. 

From previous results [2, 31 it is known that the linear 
electric motor can be driven in at least two different ways: 

. current control and commanded position control (lead angle 
control). Both parameters, current and lead angle, have a 
direct influence on the force generation and therefore on 
the . stiffness, disturbance rejection and maximum 

- Current control refeis. to the regulation of the current 
amplitude. Lead angle control allows us ,  to c o m m a n a a  
position (U in previous equations) so as to produce a desired 
lead angle for a static or a dynamic state. 

The lead angle can be understood as the difference at 
any time between the actual position and the commanded 
position. This parameter has to be non-zero in order to 
generate a non-equilibrium state and, therefore, to generate 
forces and induce movement: That is the motivation for a 
simple linear motor .model based on a spring-mass 
configuration. However, because of the cyclic nature of the 
teeth of the motor and the grooves of-the platen, the force 
generated and the lead angle relation is non-linear. In fact, 
it is a crucial parameter for the linear motor control. It is 
desired to know the required lead angle for maximum force 
generation under all operating conditions. 

It is believed that, helow the limit where the nonlinear 
 effects become dominant, the force generation is almost 
directly proportional to the magnitude of the lead angle.'It 
is to say, in this region, the system can be modeled as a 
mass-spring system. One problem-from the'implementation 
point of view is that if a constant generation force is desired 
along a trajectory then the lead angle has to be kept at the 
respective value, even. in the presence  of delays, 
disturbances and losses. Current amplitude, on the other 
hand, can be considered to he directly proportional to the 
force generated. Obviously, the force generation in this 
case is also affected by the operating condition. In general, 
the force generated at zero speed is higher than the force 
generated at non-zero speeds. As a general consequence of 
the details commented above, our objective now should be 
to find  the^ best control variable that gives us good- 
controllability. In this paper only the commanded position 

-control was studied. Finally, it is desired to linearize the 

-.. 

- acceleration of the motor. 

drag force. Ifthe drag force is linearized in v (velocity) then 
it is very easy to incorporate it in the state space 
representation, because even the simplest second order 
model takes position and velocity as state variables. 

Therefore, it was decided to approximate the equation 
describing the drag force (equation (20)) to a linear 
formula. For the range of operation of the motor, the 
following approximation introduces another error; in this 
case, the maximum error is smaller than 0.5%. 

When this simplified model is used, the following result is 
obtained: Figure 4 shows the surfaces representing the error 
introduced by this simplification. If A = 460, the error at 
any point is smaller than 3% 

Fd = 5 3 . 6 2 ~  (27) 

111. FULL STATE FEEDBACK ADAPTIVE CONTROL 
In this section, a very simple structure of the linear 

motor model is presented. Most of the adaptive controller 
development is based on this structure. The controller is 
then simulated and the convergence of the parameters is 
commented. Then, input linearization is applied in order to 
study the behavior of the adaptive controller on the second 
and fourth order models. Very important issues related to 
robustness are introduced at this point. 

A Structure of the System to be Controlled 
If the simplification on the force generated and the 

simplification on the drag force are introduced into the 
expression for the net force, then one obtains: 

F,,, = 4 6 0 s i n ( y )  5 3 . 6 2 ~  d(u,x)  (28) 

Where d(u,x) is a bounded disturbance, if no extemal 
disturbance is considered. It is because the errors from the 
approximations have been proved to be small. Besides, it is 
important to make clear here that the total error as a 
function of the states (total error = error in force generation 
+ error in drag force computation) cannot be computed 
from any combination of signals of the linearized model. 

ERROR IN FORCE GENERATED 

5 

Fig 4 Difference m force generation between second order model and 
approximated model 

With all these considerations, the structure of a linear 
plant for our problem is of the form presented in Figure 5 .  
This structure incorporates input linearization. The drag 
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force is included in the state space representation and the 
adaptive controller should be able to estimate the true value 
of this coefficient so as to improve tracking. Full state 
feedback (state variables accessible), PID control or phase- 
lead control seems to he suitable for this problem. 

After the commanded force generation has been 
computed, it is required to calculate the commanded 
position. This task is done by computing U with the inverse 
of equation (26), where F is the output of the controller and 
x is the position signal. 

Once the commanded position is computed, this signal 
is feed into the second order model, the fourth order model 
or the real plant. However, for the purpose of developing 
the adaptive control it is assumed that the input 
linearization cancels the part of the model corresponding to 
F(x,u), arriving to the very simple and linear structure 
presented in Figure 5 .  

o""yI1. 

Fig. 5 .  Input linearization ofthe linearmntor plant. 

B. Adaptive Control of the Linear Motor 
Full State Feedback Adaptive Control was chosen as a 

first implementation of the controller .for the force 
generation. This decision was made based on a desire of 
keeping the initial solution as simple as possible. 

The controller to he developed should be robust against 
the errors introduced by the simplification of the force 
generated and the drag force as well as the not well known 
parameters involved: the effective mass (m) and the 
effective friction coeficient (b). Because the order of the 
system is two, the adaptive controller has to estimate three 
parameters. The adaptive control structure's schematic 
description can be seen in Figure 6. In this figure subscript 

refers to the plant. 
After the simulations, the force-parameter history and tracking 
error of in Figures 7 and 8 is obtained. 

The reference input chosen to he a sequence of the same 
reference trajectory described above. It is not a sinusoid, 
because it is the position profile resulting from a succession 
of periods of constant acceleration and constant 
deceleration. Therefore, this reference signal is not 
persistently exciting and the parameters being estimated 
may not converge to the true values. AAer simple 
derivations it is calculated that the required gains so as to 
see convergence in about 4 seconds with no noisy signals 
were found to be: 

refers to the model and subscript 

K ",,, =IO0000 K$,,*> =IO000 KvA =IO0000 

x, = A,,x, + B,r G=de 0, ( t )  + X p  = A p x ,  + B p F  

BA (0 

Fig. 6.  Schematic nf adaptive control structure. 
. .  
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Fig. 7. Fnrce and parameters history, adaptive control ofthe linear plant. 

IV. CONCLUSIONS 
In this paper, the development of an adaptive control for 

a two-dimensional linear motor for robotic palletizing 
systems is presented. For this development, first the 
modeling of the linear motor has been com pleted. After 
deciding on the best model, an adaptive controller has been 
suggested to  improve the reliability of the system. 

From the results it is concluded that an adaptive 
controller can be implemented for the control of the linear 
motor plant. But this controller may need to be improved if 
the application of the machine based on linear motors 
requires accurate tracking. If the application calls for 
maximum accelerations, maximum velocities andor  strong 
disturbance rejections then we need to ensure a proper 
response from the motor since the very beginning of the 
execution, in order to avoid loss of synchronism. 
Furthermore, usual trajectories for this machine are not 
persistently exciting. 

However, an adaptive controller could be used to 
estimate the parameters of a fixed (non-adaptive) controller 
at the beginning of the execution in order to find the 
optimum values corresponding to the operating conditions 
of the plant at that time. This method seems to he very 
realistic due to the time varying operating conditions of 
most mechanical systems, a phenomenon generally not 
included in the model. 

Fig. 8. Tracking enor, adaptive control ofthe linear plant 
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