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Abstract-In this paper, a linear matrix inequality (LMI) 
approach combined with cone complementarity algorithm is 
presented for synthesis of H ,  velocity feedback vibration con- 
trollers. The fulUreduced order dynamic controllers are con- . 
sidered to be decentralized and positive real. Linear matrix 
inequalities (LMls) are used to form these constraints. Examples 
are presented to demonstrate the approach. 

I .  INTRODUCTION 

High amplitude values in vibration systems are usually 
undesired because of their negative effects on performance 
and safety of the system. These peak values can be eliminated 
using various control approaches [I], [2], [3]. One of these 
methods is the velocity feedback control [8]. In this method, 
velocity values of the system is used to create the control 
action, which can either be in static or dynamic state. This 
paper treats the case of dynamic output feedback. 

The decision of selecting the controller parameters depends 
on the performance requirements of both the controller and the 
uncontrolled system. The bounded real lemma for the closed 
loop system is the starting point for the formulation of desired 
system specifications. The constraints on the controller transfer 
function can he considered to be decentralized and positive 
real. The decentralized controller structure is in a diagonal 
or block diagonal form, thus the inputioutput pairing can be 
established. On the other hand, the positive realness is the key 
criteria in order to design passive controllers [4]. 

Linear matrix inequalities are used to represent these con- 
straints on system and controller performances [ 5 ] ,  [6], [7]. In 
this paper; a combined LMI-cone complementarity algorithm 
is used in order to compute the velocity feedback controller 
parameters. 

I I .  H ,  CONTROL 

Consider a nkh order linear time-invariant generalized plant 
P containing the vibrating plant and all frequency-dependent 
weighting functions. The plant transfer function can be written 
in state space form as 

A Bi 

where the matrices are arranged in the form; 

B21 Bzz . . .  BZN ] :t 1 f 0 1 2 1  Dizz ... Dim ] 
cz = [ CZ1 C Z Z  ... CZN 1' ' 

Dzz = 0 2 2 1  Dzzz . . .  DZZN 
Dzi = 0 2 1 1  DZIZ . . '  

and i = 1, ._, N ,  total number of controller forces acting on 
the plant. 

The aim is to minimize the vibration amplitude 
vector,z(t) E Rn=. yi(t) E Rnv and ui(t) E fin" are the ith 
observation vector representing the measured variables,here 
velocities, and corresponding ith control input vector, 
respectively. x ( t )  E Rnp is the state vector of the system. 
The disturbance vector wi t )  E Rnu2 contains all extemal 
inputs, including disturbances, sensor noise, and commands. 

constant and compatible in dimension with corresponding 
vectors. 

The equations of motion for linear time-invariant dynamic 
controllers of fixed order 71, are given as: 

The matrices A; B72, C11, D I ~ , D ~ Z ,  CZI, DZI, DZZ are 

(2) 
&(tI = A,x,(tl t &Y(t) 
U ( t )  C c x c ( t )  + Dcy(t) 

arranging in the matrix form: 

where x, E fin= is the controller state. 
The controller transfer function matrix is 

(4) 

When a linear controller with transfer function K ( s )  in- 
serted from y to U, the closed loop transfer function from 20 

to I can be constructed (Figure 1). If the open-loop system is 
augmented with the states corresponding to the controller, the 
following augmented system can be obtained 

_ _ _  

(5 )  

x 

U 
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(12) 

(13) 
X I  Tank [ I j < n , t n 2 ,  

The rank constraint exists whenever the order of the controller 
is smaller than the order of the plant. The relation 

Fig. 1. Generalized plantcontroller configuration 

equivalently, 

A B1 B z  [ f ] = [ c 1  Dl1 D l Z ]  [ i ]  
CZ DZI 0 5 2  

A B1 [:I=[ c 1  B l l ] [  :] 
The closed-loop system matrix can be written as an affine 
function of the controller matrix as follows: 

Rank(I  - X U )  5 n, 

can be written as 

X I  
R a n k [  I Y j 

= R a n k  

and it can he obtained that [5] 
R a n k ( X )  = np. R a n k ( Y - X - ' )  = Rank(YlzY;2'Y$) 5 

Then by introducing the notation 
71,. 

where where X, Y t R"-""p and X22,  YZZ t R"cxn= and inserting 
the expressions for the closed-loop matrices in the bounded 
real lemma condition, the following BMI formulation of the 
H, control problem can be obtained Find a parameter matrix 
Q > and a controller 

A,  t &(I  - DzD,)- 'D?zC,  & ( I -  DzzD,)-' 
Dc(I-DzzDc)- '  

llTzw& denotes H, norm of the closed-loop transfer 
function from w to 2 where T,, = 0 1 1  t C l ( s I - A ) - ' & ,  i.e. 
its largest gain across frequency in the singular value norm. 
~ ~ T Z u , ~ ~ ,  < can be interpreted as a disturbance rejection 
performance, so the following lemma can be introduced 

Lemma I:  Bounded Real Lemma [5] Given a system of 
the form 

K such that 

( A  t BZ<C%)~Q t &(A + EzkC2,) Q(8i  + BzkDzi) 
(El-+ Bz-KD?i!'Q " 

cc1 + D1?4"',' 
(C8 + D12KCZ) @,I + D 1 Z K m  

(15) 
1 oil + D ~ ~ K D ~ ~ ) ~  < 0 

-71 

(15) can be solved by standard LMI Matlab-Software. 
(8) 

A B1 

then the following statements are equivalent: 
111. CONSTRAINTS ON THE CONTROLLER 

i) IITzw(.)l/m < Y 
ii) there exists a positive definite matrix Q such that A. DECENTRALIZED CONTROLLER 

For a decentralized controller with N-controller force action 
B p  -yI DTl (9) on the plant; the matrices A,, E,, C,, D,, consist of N sub- 

matrices Ai, Si, i;, bi, in following form: 

ATQ+QA QB1 CT 

Dll  -71 

braic procedure the following necessary and sufficient condi- 
tions for the H, control problem can be obtained: There exists 
a controller that solves the fixed order H ,  control problem 
if and only if there exist positive definite matrices X and Y 
such that 

= d i a g ( [ A l h ~ x A , ,  !AZ1fi2xfii> ' ' ' : [ A N ~ A N x A N ) ~ , x ~ ,  

Bc = diag([BllA,xl, [ B z l i i z x l , " '  , [ f j N ] f i ~ x l ) n , x N  

Cc = d ~ W ( [ c i ] i x ~ ~ ~  [ ~ z ] ~ x A ~ , " '  , [ C N ] ~ X A ~ ) N X ~ ,  
D,  = d i a g ( [ b 1 ] 1 ~ 1 ,  [Dzl lx l ,  . . .  , [ ~ ) N ] ~ X I ) N X N  

523 
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B. POSITIVE REALNESS 
Lemma 2: Positive Real Lemma [5] The passivity prop- 

erty for positive realness of the controller is equivalent to the 
existence of any matrix W = WT > 0 such that 

where 

IV. A COMBINED LMI-CONE COMPLEMENTARITY 
ALGORITHM 

Before introducing the algorithm, the following sets in the 
space of symmetric matrices can be defined; 

D =  {z E SZn : Z = [ ; ; ] ,X ,Y  E s-1, 
Rk = {z E SZn : Tank(Z + J )  5 k } ,  
where k = np + nc and 

0 I., 
J=I , rnp  0 ] E s2n. 
In ad ition to the convex LMI constraint sets(l0-12), when 

the non-convex constraint exists, the following theorem should 
be used to compute the orthogonal projection onto the non- 
convex constraint set. 

Theorem 1: [7] Let Z E 5''' and let Z + J = UCVT be 
the singular value decomposition of Z t J .  The orthogonal 
projection, Z' = q l k Z  onto the set Rk is given by 

z' = UCkVT - J 

where Ck is the diagonal matrix obtained by replacing the 
smallest n, - n, singular values in 2 + J by zero. 

Step 1: Find X, Y that satisfy the LMI constraints (10-12) 
and minimize y. If the problem is infeasible, stop. Otherwise, 

= y andset  X O  = X,Yo = Y and k = 1. Using (14), 
solve (15) for K and go to step 7. If the solution is infeasible, 
go to step 2. 

+ e with 0 < L < 10e ~ 2. Find 
Xk,Yk  that solve the corresponding cone complementarity 
problem [6]:  

Step 3: minimize Tr(Xk-lYk + X k Y k - l )  subject to LMI's 

Step 4: lfthe objective Tr ( X k - l Y k + X k Y k - l )  has reached 
a stationary point, go to Step 5. Otherwise, set k = k + 1 and 
go to Step 3. 

Step 5: Denote the minimizing solutions by ( X * , Y * ) ;  that 
is, the projection onto rconvez is written as ( X * , Y * )  = 
'PI-,,,,,, ( X O ,  YO), construct Z. If there exist non-convex con- 
straints apply the Theorem (1) and compute z'. 

Step 6 Take Q = 2 or Z* and solve the controller K in 
(15). If the solution is infeasible, go to step 2. 

Step 7: When the positive realness constraint exists on the 
controller, check (18). lfthe controller satisfies (18), stop, else 
eo to steu 2. 

Step 2: Set ~k = 

(10 - 12). 

The extemal harmonic excitation force acts on the first degree 
of freedom. The m-norm of the second degree of freedom 
should be minimized. The controller acts on the second degree 
of freedom of the system. The corresponding state space 
matrices are; 

r 0  o 1 0 1  
0 0  0 

-8 4 -0.02 0.01 1 4 -4 0.01 -0.01 J 

B 1 = [ O  0 1 O ] T , C 1 = [ O  1 0  0 1  

The standard assumptions for the system are: 

A.2 (A,  B l )  is stabilizable and (C1,A) is detectable. 
A.3 (A, B2) is stabilizahle and (C2,A) is detectable for 

existence of aitabilizing K .  
A.4 For ensurance of proper and realizable controller : 

rank& = nu, rank91  = ny. 
A S  DT2 [ C1 D12 ] = [ 0 I 1.  It means that CIS and 

012u are orthogonal so that the penalty on z = Clz t Dlzu 
includes a nonsingular-penalty on the control U.  

] 02: = [ 1. It is dual to A S  and concerns 

how the exogenous signal tu enters P: 2u includes both plant 
disturbance and sensor noise, these are orthogonal, and the 

A.l 011 = 0 , 0 2 2  = 0. 

. .  
A.6 [ 

sensor noise weighting is nonsingular. 
A - j w l  Bz - A.1 Tank n, + nu and 

= n, t ny Vw E R. to ensure that 

Doles or zeros 

A - j w I  E1 

on the imaginary axis which would result in closed-loop 
instability. 

A.8 The controller is assumed to be collocated; 

C2 = BT 

A. POSITIVE REAL FULL ORDER DYNAMIC 'CON. 
TROLLER SYNTHESIS 

A 4th order controller is to be synthesized. After the 
optimization ; the results are: llTz,,,(s)llm < ymin = 1.5572. 
The minimized vibration amplitude of the second degree of 
freedom at is 0.4924. The frequency response with and without 
controller is given in Figure 2. The synthesized controller is : 

L 

V. NUMERICAL EXAMPLES 
In this section a case study on controller synthesis is given. 

As a model, the two degree of freedom system [9] has the 
equations of motion 

524 
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- 
-m 

-0.239 0 
-0.368 0 

0 0.187 
0 ' -0.103 

0 0.837 . 
0.560 0 

1 
d 

Fig. 2. Positivo real full order controller introduction 

I 
Id 

hepvannr 

Fig. 3. Positive real reduced order dynamic controller introduction 

B. POSITIVE REAL REDUCED ORDER DYNAMIC CON- 
TROLLER SYNTHESIS 

A 2nd order controller is to he synthesized. After the 
optimization; the results are: ~~Tz,, ,(s)~~, < = 1.6572. 
The minimized vibration amplitude of the second degree of 
freedom is 0.5650. The frequency response with and without 
controller is given in Figure 3. The synthesized controller is : 

. , - , r -8.6971 -5.6155 I 0.0557 1 
K = 1-1 = 1 -2.5912 -29.748-] 

18.6986 11.6868 0.7609 cc D, 

C. DECENTRALIZED DYNAMIC CONTROLLER SYNTHE- 
SIS 

A 4th order decentralized controller is to be synthesized. 
AAer the optimization process; the results are: ~ [ T z w ( s ) ~ ~ ,  < 
+ymtn = 2.0886. The minimized vibration amplitude of the 
second degree of freedom at is 0.4924.The frequency response 

525 

Fig. 4. positive real decentralized dynamic controller. 

with and without controller is given in Figure 4. The synthe- 
sized controller IS: 

-0.628 0.990 0 0 
-1.314 -0.995 0 0 

0 -1.722 10.478 
0 -1.513 -0.505 

= 1 -0:2G6 -0.344 0 0 
0 -0.047 0.572 

VI. CONCLUSION 
In this paper, a solution method for the H,  control problem 

is presented using linear matrix inequalities (LMls). Full, 
decentralized and reduced order positive real velocity feedback 
dynamic controllers are designed for this purpose. The con- 
straints on the system and controller transfer functions increase 
the H, norm and give less effective results for the system 
performance. 
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