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VELOCITY FEEDBACK DYNAMIC VIBRATION
CONTROLLER SYNTHESIS: LMI APPROACH
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Abstract—In this paper, a linear matrix inequality (LMI)
approach combined with cone complementarity algorithm is
presented for synthesis of H,, velocity feedback vibration con-
trollers. The full/reduced order dynamic controllers are con-
sidered to be decentralized and positive real. Linear matrix
inequalities (LMIs) are used to form these constraints, Examples
are presented to demonstrate the approach.

[, INTRODUCTION

High amplitude values in vibration systems are usually
undesired because of their negative effects on performance
and safety of the system. These peak values can be eliminated
using various control approaches [1], [2], [3]. One of these
methods is the velocity feedback centrol [8]. In this method,
velocity values of the system is used to create the control
action, which can either be in static or dynamic state. This
paper treats the case of dynamic output feedback.

The decision of selecting the controller parameters depends
on the performance requirements of both the controller and the
uncontrolled system. The bounded real lemma for the closed
loop system 1s the starting point for the formulation of desired
system specifications. The constraints on the controller transfer
function can be considered to be decentralized and positive
real. The decentralized controller structure is in a diagonal
or block diagonal form, thus the input/output pairing can be
established. On the other hand, the positive realness is the key
criteria in order to design passive controllers {4].

Linear matrix inequalities are used to represent these con-
straints on system and controller performances [5], [6], [7]. In
this paper; a combined LMI-cone complementarity algorithm
1s used in order to compute the velocity feedback controller
parameters.

Il. Ho CONTROL

Consider a ng‘ order linear time-invariant generalized plant
P containing the vibrating plant and all frequency-dependent
weighting functions. The plant transfer function can be written

in state space form as

i A B B T
z |=1Cy Pn Dp w m
Cy Dy Dy U
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where the matrices are arranged in the form;

By = [ Bun By By |
Dz = | Din Dim D121r}{ ]
Cy = [Ca Cn Can |
Doy = | Don Doxz Do1w
Dy, = | Dozt Doz Dosn
and i = 1,.., N, total number of controller forces acting on
the plant.
The aim is to minimize the vibration amplitude

vector,z(t) € R™. y;(t) € R™ and wu;(t) € R™ are the ith
observation vector tepresenting the measured variables,here
velocities, and corresponding ith control input vector,
respectively. z(t) € R" is the state vector of the system.
The disturbance vector w(t) € R™ contains all external
inputs, including disturbances, sensor noise, and commands.
The matrices A, Bgy, Byg,Ci1, D11, Dig, Co1, D, Doy are
constant and compatible in dimension with corresponding
vectors. .
The equations of motion for linear time-invariant dynamic
controllers of fixed order n, are given as:

o) = Acze(t) + Bey(t) @)
ult) = Coxe(t) + Dey(t)

arranging in the matrix form:
i'c _. Ac Bc Te
Elenlyl e
where £, € R™ is the controller state.
The controller transfer function matrix is

A: B
K:[CC Dc] @)

When a linear controller with transfer function K(s) in-
serted from y to u, the closed loop transfer function from w
to z can be constructed (Figure 1). If the open-loop system is
augmented with the states corresponding to the controller, the
following augmented system can be obtained:

T A 0 B; 0 Bg T
de 0 o o0ln, 0 Ie
"z l=|¢C 01Du| 0 Du w &)
T 0 I, | 070 0 R
Yy Co 0 Dy| 0 Dy U
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Fig. 1. Generalized plant-controller configuration

equivalently,

z | = C:1 911 912 w
¥ Cy Doy Dso u
where
= T ~ | e - [ Te
e R
with '

The closed-loop system matrix can be written as an affine
function of the controller matrix as follows:

/i Bl fi 31 Bz - =~ ~
-G T R 2K
{Cl Dll} ‘:Cl D11}+|:D12} [02 Dzl]
©®
where
f= [ ActBell = Do) 1D32Ce Be(l — DpaDe) ™!
- [ CC(I*DZQDCJ_I DC(I—'DZQDC)-I ]

[[Tyw|loo denotes Hy, norm of the closed-loop transfer
function from w to z where T,y = D1y +Ci(sI~A)"' By, ie.
its largest gain across frequency in the singular value norm.
I Towlloe < -y can be interpreted as a disturbance rejection
performance, so the following lemma can be introduced:

Lemma I: Bounded Real Lemnma (5] Given a system of

the form ) .
P1_[4 B[z
2 - C] DH w

then the following statements are equivalent:

) 12w (s)lee <y
i) there exists a positive definite matrix ¢J such that

AQ1Qi qB, of

&

BYQ —I D}, | <o. %
Cy Dy -l

Using the elimination Lemma [7] and Tollowing an alge-

of 1T [ATY+YA YB c{ of 1+7 T
[D;‘"l] [ B'Y  —4 D [Dﬂ] % <0
0 il & Dyz i b g
: (i
X I
[[ Y}zo (12)
X I

rank{ : Y}Snpm (13)

The rank constraint exists whenever the order of the controller
is smaller than the order of the plant. The relation

Rank(I - XY) <n,

can be written as

X I
Rank[I Y]
I ol[x 10[1 x!
= Rank |yt IHI YHO I }
X 0
= Rank 0 Y—X‘l}' ’ -
< Rank(Y — X~1) + Rank(X)

and it can be obtained that [5]

Rank(X) = ny, Rank(Y —X~1)
g

Then by introducing the notation

Y .Y _ X X ]
- , 14
Q [ Yli; Y22 } Q [ X;F? X22 ( )

where X, Y € R™*" and Xpg, Y2 € B™"" and inserting
the expressions for the closed-loop matrices in the bounded
real lemma condition, the following BMI formulation of the
H, control problem can be obtained: Find a parameter matrix
2 > 0 and a controller matrix K such that

= Rank(Y12Y5' V) <

(A + B KC)TQ + QU A4 B:K ()
(51 + B2KD21)TQ
(€3 + D12k &)

Q(fh + szf)zl)
4l
_ (D +Di2KDn)
(¢ + 1?12{{(2'2)T
(D11 + D1z K Dny)™
I

<0

(15)
(15) can be solved by standard LMI Matlab-Software.
III. CONSTRAINTS ON THE CONTROLLER
A. DECENTRALIZED CONTROLLER

For a decentralized controller with N-controller force action
on the plant; the matrices A, B.,C,, D, consist of N sub-
matrices A;, By, €y, D;, in following form:

braic procedure the following necessary and sufficient condi- ¢ = dzia,g ([41]’”‘1“‘ : LAQ}"W Xfze Ty AN i I,
tions for the H, control problem can be obtained: There exists ~ Bc = dmg([@l]fll”, [?ﬂﬁzx Lt [?N]ﬁA'X1JHGXN
a controller that solves the fixed order Hy, control problem  Ce = diag([Cilixay, [Colixha, -+ [CN]ixay ) vxn.
if and only if there exist positive definite matrices X and V' De = diag([D1]ix1, [Da)ixi, -+ [Dn]ix1) NN
such that ) (16)
[ Bs Jl’f' JJFAX +X4T  xcT By [ B, }“‘ A T with N
T _ N
BT e S0 e
: (10) i=1
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B. POSITIVE REALNESS

Lemma 2: Positive Real Lemma [5] The passivity prop-
erty for positive realness of the controller is equivalent to the
existence of any matrix W = W7 > 0 such that

ATW WA, CT -WB,
{ C.—-B'W -(pf+py |=0 @9
IV. A COMBINED LMI-CONE COMPLEMENTARITY
ALGORITHM

Before introducing the algorithm, the following sets in the
space of symmetric matrices can be defined;

D={Zes¥™:Z = )é 10/ , X, Y € g™,
Rk ={Z € 8% i rank(Z + J) < k},
where k =n, 4+ n. and

_ 0 In 2n
J= L I, o | €5
In addition to the convex LMI constraint sets(10—12), when
the non-convex constraint exists, the following theorem should
be used to compute the orthogonal projection onto the non-
convex constraint set,

Theorem |: [T Let Z€ 8® andlet Z4+ J = UZVT be
the singular value decompesition of Z + J. The orthogonal
prajection, Z* = Pp _Z onto the set Ry, is given by

Zr=Ug,vi - J

where Xy is the diagonal matrix obtained by replacing the
smallest n, — n, singular values in Z + J by zero.

Step 1: Find X, Y that satisfy the LMI constraints (10—12}
and minimize . If the problem is infeasible, stop. Otherwise,
Ymin = 7y and set Xo=XYy =Y and k = 1. Using (14},
solve (15) for K and go to step 7. If the solution is infeasible,
go to step 2.

Step 2: Set vy, = Y1 + € with 0 < ¢ < 10e — 2. Find
X5, Y, that solve the corresponding cone complementarity
problem [6]:

Step 3: minimize Tr(X, 1Y}, + Xi.Yi_1) subject to LMI's
(10 - 12).

Step 4: If the objective Tr {X;_1Y),+ X Y1) has reached
a stationary point, go to Step 5. Otherwise, set k = k+1 and
go to Step 3.

Step 5: Denote the minimizing solutions by (X*,Y™*); that
is, the projection onto [conyer 18 written as {(X*,¥V*) =
Pr,....(Xo,Ys), construct Z. If there exist non-convex con-
straints apply the Theorem (1) and compute Z*.

Step 6: Take Q = Z or Z* and solve the controlier K in
(15). If the solution is infeasible, go to step 2.

Step 7: When the positive realness constraint exists on the
controller, check (18). If the controller satisfies (18}, stop, else
go to step 2. '

V. NUMERICAL EXAMPLES

In this section a case study on controller synthesis is given.
As a model, the two degree of freedom system [9] has the
equations of motion

Mi4+ D+ K= [ g]

where

10 0.02
M=[0 1]’92{—0.01

The external harmonic excitation force acts on the first degree
of freedom. The co-norm of the second degree of freedom
should be minimized. The controller acts on the second degree
of freedom of the system. The corresponding state space
matrices are;

—0.01 8 -4
0.01 ]’K:{—z; 1 ]

0 0 1 0 )
4| 0 0 o0 1

-8 4 002 001

4 —4 001 —001

Bi=[0o0 10" ci=[010 0]

The standard assumptions for the system are:

A Dyy =0, Dgy = 0.

A.2 (A, By) is stabilizable and (C}, A] is detectable.

A3 (A, By} is stabilizable and (C3, A) is detectable for
existence of a stabilizing K.

" A4 For ensurance of proper and realizable controller :

rank Dz = ny, rank Dy = ny.

ASD[ €1 Dy |=[0 I ] Itmeansthat Ciz and
Dyou are orthogonal so that the penalty on z = Ciz + Diqu
includes a nonsingular. penalty on the control w.

A6 [ By DL = O 1 1t is dual to A.5 and concerns

Dy I
how the exogenous signal w enters P: w includes both plant
disturbance and sensor noise, these are orthogonal, and the

sensor noise weighting is nonsingular.
A ij Bg
A. =
7 rank o Do Tip

= np +ny, Yw € R. to ensure that

+ n, and

rank

the opiimal controller does not try to cancel poles or zeros
on the imaginary axis which would result in closed-loop
instability. )

A.8 The controller is assumed to be collocated;

C, = Bf

A. POSITIVE REAL FULL ORDER DYNAMIC “CON-
TROLLER SYNTHESIS

A 4th order controller is to be synthesized. After the
optimization ; the results are: ||754,(8)lco < Ymin = 1.5572.
The minimized vibration amplitude of the second degree of
freedom at is 0.4924. The frequency response with and without
controller is given in Figure 2. The synthesized controller is :

Ao | B.
K ’[ C. 1 D.
—0.6773 —=13b11 0.5425 7.0438 0.5373
0.6455 —0.1479 -1.2852 -—-0.6603 | —0.1166
= 0.6579 0.6359 —1.7561 5.7770 | —1.2822
—0.8009 0.1488 —0.3616 -1.2904 | 0.6716
0.3755% 0.0775 —0.9792 1.8920 i 0.0004
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Fig. 2. Positive real full order controller introduction
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Fig. 3. Positive real reduced order dynamic controller introduction

B. POSITIVE REAL REDUCED ORDER DYNAMIC CON-
TROLLER SYNTHESIS

A 2nd order controller is to be synthesized. After the
optimization; the results are: |75, {8)lco < Fmin = 1.6572.
The minimized vibration amplitude of the second degree of
freedom is 0.5650. The frequency response with and without
controller is given in Figure 3. The synthesized controller is :

AR —8.6971 —5.6155 | 0.05857
K= [ CC Dc ] = —-2.5912 -29.7489 ] 0.0259
clre 18.6986  11.6868 | 0.7609

C. DECENTRALIZED DYNAMIC CONTROLLER SYNTHE-
SIS

A 4th order decentralized controlier is to be synthesized.
After the optimization process; the results are: [T (8)|oo <
~min = 2.0886. The minimized vibration amplitude of the
second degree of freedom at 15 0.4924. The frequency response
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Fig. 4. positive real decentralized dynamic controller.

with and without controller is given in Figure 4. The synthe-
sized controller is:

Ac | Be
K=17-1D,

—0.628 0.9%) 0 0 —0.239 ]
—-1.314 —-0.995 0 0 —0.368 0

_ 0 0 —1.722 10.478 0 0.187

- 0 0 —1.513 —0.505 0 T —(.103
—0.266 -0.344 0 0 0.560 0

0 0 0047 0572 | © 0837

V1. CONCLUSION

In this paper, a solution method for the H, control problem
is presented using linear matrix inequalities (LMIs). Full,
decentralized and reduced order positive real velocity feedback
dynamic controllets are designed for this purpose. The con-
straints on the system and controller transfer functions increase
the H,, norm and give less effective results for the system
performance.
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